Cytoplasmic localization and localized translation of messenger RNAs contribute to asymmetrical protein distribution. Recognition of localized mRNAs by RNA-binding proteins can occur in the cytoplasm or, alternatively, co-or post-transcriptionally in the nucleus. In budding yeast, mRNAs destined for localization are bound by the She2 protein before their nuclear export. Here, we show that a specific transcript, known as ASH1 mRNA, and She2 localize specifically to the nucleolus when their nuclear export is blocked. Nucleolar She2 localization is enhanced in a She2 mutant that cannot bind to RNA. A fusion protein of the amino terminus of She3 and She2 (She3N-She2) fails to enter the nucleus, but does not impair ASH1 mRNA localization. Instead, these cells fail to distribute Ash1 protein asymmetrically, which is caused by a defective translational control of ASH1 mRNA. Our results indicate that the nucleolar transit of RNA-binding proteins such as She2 is necessary for the correct assembly of translationally silenced localizing messenger ribonucleoproteins.
Myosin-motors are conserved from yeast to human and transport a great variety of cargoes. Most plus-end directed myosins, which constitute the vast majority of all myosin motors, form stable dimers and interact constitutively with their cargo complexes. To date, little is known about regulatory mechanisms for cargocomplex assembly. In this study, we show that the type V myosin Myo4p binds to its cargo via two distinct binding regions, the C-terminal tail and a coiled-coil domain-containing fragment. Furthermore, we find that Myo4p is strictly monomeric at physiologic concentrations. Because type V myosins are thought to require dimerization for processive movement, a mechanism must be in place to ensure that oligomeric Myo4p is incorporated into cargotranslocation complexes. Indeed, we find that artificial dimerization of the Myo4p C-terminal tail promotes stabilization of myosincargo complexes, suggesting that full-length Myo4p dimerizes in the cocomplex as well. We also combined the Myo4p C-terminal tail with the coiled-coil region, lever arm, and motor domain from a different myosin to form constitutively dimeric motor proteins. This heterologous motor successfully translocates its cargo in vivo, suggesting that wild-type Myo4p may also function as a dimer during cargo-complex transport.cell asymmetry ͉ Myo4p ͉ RNA localization ͉ She3p ͉ motor protein
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.