Two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy is a fairly novel method for the quantification of metabolites in biological fluids and tissue extracts. We show in this contribution that, compared to 1D 1H spectra, superior quantification of human urinary metabolites is obtained from 2D 1H-13C heteronuclear single-quantum correlation (HSQC) spectra measured at natural abundance. This was accomplished by the generation of separate calibration curves for the different 2D HSQC signals of each metabolite. Lower limits of detection were in the low to mid micromolar range and were generally the lower the greater the number of methyl groups contained in an analyte. The quantitative 2D NMR data obtained for a selected set of 17 urinary metabolites were compared to those obtained independently by means of gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry of amino acids and hippurate as well as enzymatic and colorimetric measurements of creatinine. As a typical application, 2D-NMR was used for the investigation of urine from patients with inborn errors of metabolism.
Single-cell level measurements are necessary to characterize the intrinsic biological variability in a population of cells. In this study, we demonstrate that, with the microarrays for mass spectrometry platform, we are able to observe this variability. We monitor environmentally (2-deoxy-D-glucose) and genetically (ΔPFK2) perturbed Saccharomyces cerevisiae cells at the single-cell, few-cell, and population levels. Correlation plots between metabolites from the glycolytic pathway, as well as with the observed ATP/ADP ratio as a measure of cellular energy charge, give biological insight that is not accessible from population-level metabolomic data.single-cell measurements | MALDI mass spectrometry | baker's yeast E ven genetically identical cells present in the same microenvironment can express different phenotypes, for a number of reasons: cell-to-cell heterogeneity can stem from differences in the cell age and differences in the cell cycle stage, and stochastic effects together with feedback mechanisms can lead to distinctively different phenotypes, too (1-6). As population-level measurement techniques inherently average out such cell-to-cell differences, biochemical mechanisms underlying a studied system cannot be deduced from such measurements. Thus, to detect and exploit this heterogeneity, new analytical platforms with a sensitivity at the single-cell level and the ability to perform quantitative analyses must be developed and validated.Motivated by advances of mass spectrometry (MS) in metabolomics, the analytical chemistry community has stepped up its efforts toward realizing MS-based single-cell metabolomics (1, 2). A number of analytical approaches were developed with detection limits low enough for single-cell metabolite analyses [e.g., nanostructured surfaces (7, 8), postionization techniques (9, 10), modified laser optics (11), the use of microsampling tools (12, 13), microarrays for MS measurements (14, 15), etc.]. Until now, however, most MS studies targeting single-cell metabolite analysis have only shown the analytical capabilities, but have not demonstrated that true biological information can be retrieved from studying the metabolism of single cells.Here, using the unicellular eukaryotic model organism Saccharomyces cerevisiae, we present an analytical validation of a single-cell metabolite analysis using the microarrays for mass spectrometry (MAMS) platform. This validation concerns both the analytical methodology and the biological information, by monitoring expected cellular responses upon an environmental and a genetic perturbation. Furthermore, we present examples of biological insight that are only accessible with a platform such as MAMS. Specifically, we unravel metabolite-metabolite correlations, and visualize coexisting subpopulations in an isogenic cell culture. This technology can now be used to reveal metabolic differences in cells of isogenic cell populations, such as differences caused by cell cycles stages, cell ages, or stochastically induced phenotypic differences. Results and ...
Functional high-density micro-arrays for mass spectrometry enable rapid picolitre-volume aliquoting and ultrasensitive analysis of microscale samples, for example, single cells.
Heterogeneity is a characteristic feature of all populations of living organisms. Here we make an attempt to validate a single-cell mass spectrometric method for detection of changes in metabolite levels occurring in populations of unicellular organisms. Selected metabolites involved in central metabolism (ADP, ATP, GTP, and UDP-Glucose) could readily be detected in single cells of Closterium acerosum by means of negative-mode matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS). The analytical capabilities of this approach were characterized using standard compounds. The method was then used to study populations of individual cells with different levels of the chosen metabolites. With principal component analysis and support vector machine algorithms, it was possible to achieve a clear separation of individual C. acerosum cells in different metabolic states. This study demonstrates the suitability of mass spectrometric analysis of metabolites in single cells to measure cell-population heterogeneity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.