SummaryPhase separation represents an important form of subcellular compartmentalization. However, relatively little is known about how the formation or disassembly of such compartments is regulated. In zebrafish, the Balbiani body (Bb) and the germ plasm (Gp) are intimately linked phase-separated structures essential for germ cell specification and home to many germ cell-specific mRNAs and proteins. Throughout development, these structures occur as a single large aggregate (Bb), which disperses throughout oogenesis and upon fertilization accumulates again into relatively large assemblies (Gp). Formation of the Bb requires Bucky ball (Buc), a protein with prion-like properties. We found that the multi-tudor domain-containing protein Tdrd6a interacts with Buc, affecting its mobility and aggregation properties. Importantly, lack of this regulatory interaction leads to significant defects in germ cell development. Our work presents insights into how prion-like protein aggregations can be regulated and highlights the biological relevance of such regulatory events.
The proteins Oskar (Osk) in Drosophila and Bucky ball (Buc) in zebrafish act as germ plasm organizers. Both proteins recapitulate germ plasm activities but seem to be unique to their animal groups. Here, we discover that Osk and Buc show similar activities during germ cell specification. Drosophila Osk induces additional PGCs in zebrafish. Surprisingly, Osk and Buc do not show homologous protein motifs that would explain their related function. Nonetheless, we detect that both proteins contain stretches of intrinsically disordered regions (IDRs), which seem to be involved in protein aggregation. IDRs are known to rapidly change their sequence during evolution, which might obscure biochemical interaction motifs. Indeed, we show that Buc binds to the known Oskar interactors Vasa protein and nanos mRNA indicating conserved biochemical activities. These data provide a molecular framework for two proteins with unrelated sequence but with equivalent function to assemble a conserved core-complex nucleating germ plasm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.