The catalytic oxidation of carbon monoxide (CO) on a platinum (111) surface was studied by scanning tunneling microscopy. The adsorbed oxygen atoms and CO molecules were imaged with atomic resolution, and their reactions to carbon dioxide (CO2) were monitored as functions of time. The results allowed the formulation of a rate law that takes the distribution of the reactants in separate domains into account. From temperature-dependent measurements, the kinetic parameters were obtained. Their values agree well with data from macroscopic measurements. In this way, a kinetic description of a chemical reaction was achieved that is based solely on the statistics of the underlying atomic processes.
OH species adsorbed on Pt(111) were studied in a combined investigation using scanning tunneling microscopy (STM) and high-resolution electron energy loss spectroscopy (HREELS). OH was formed by two different reactions, by reaction of H2O with O, and as an intermediate in the reaction of O with hydrogen to H2O. In both cases, two ordered OH phases were observed, a (√3×√3)R30° and a (3×3) structure, for which models are proposed. Both structures have OH coverages of 2/3, and their formation is driven by hydrogen bond formation between the adparticles; the OH adsorption site is most likely on top. OH molecules at defects in the adlayer, in particular at island edges, are spectroscopically distinguishable and contribute significantly to the vibrational spectra in disordered OH layers. This is important for the water formation reaction, where the OH islands are small. The discrepancies between previous HREELS studies on OH can be explained by the different degree of order under the various formation conditions.
Scanning tunneling microscopy data revealed the atomic processes in propagating reaction fronts that occur in the catalytic oxidation of hydrogen on Pt(111). The fronts were also characterized on mesoscopic length scales with respect to their velocity and width. Simulations on the basis of a reaction-diffusion model reproduce the experimental findings qualitatively well. The quantitative comparison reveals the limitations of this traditional approach to modeling spatiotemporal pattern formation in nonlinear dynamics.
Traveling reaction fronts in the oxidation of hydrogen on a Pt(111) surface were investigated by means of scanning tunneling microscopy (STM). The fronts were observed during dosing of the oxygen covered surface with hydrogen at temperatures below 170 K. The fronts represented 10 to 100 nm wide OH-covered regions, separating unreacted O atoms from the reaction product H2O. O atoms were transformed into H2O by the motion of the OH zone. Small scale STM data showed the processes within the fronts on the atomic scale. Experiments on larger scale revealed the velocity and the width of the fronts as a function of temperature. A simple reaction–diffusion model has been constructed, which contains two reaction steps and the surface diffusion of water molecules, and qualitatively reproduces the experimental observations. A lower bound for the front velocity was also derived analytically. For a quantitative comparison between experiment and theory the rate constants of the two reaction steps and the diffusion coefficient of H2O were determined by STM and low energy electron diffraction experiments. With these parameters, the front velocities predicted by the model are approximately one order of magnitude smaller than those determined by STM. The predicted front widths are, depending on the temperature, between two and three orders of magnitude larger than the experimental values. We conclude that these deviations result from the inability of the reaction–diffusion system to describe the complex chemical processes and structure changes within the fronts. The atomically resolved STM data indicate attractive interactions between the particles that in particular affect the diffusion of the H2O molecules
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.