The origin of the organic layer covering colloidal biogenic elemental selenium nanoparticles (BioSeNPs) is not known, particularly in the case when they are synthesized by complex microbial communities. This study investigated the presence of extracellular polymeric substances (EPS) on BioSeNPs. The role of EPS in capping the extracellularly available BioSeNPs was also examined. Fourier transform infrared (FT-IR) spectroscopy and colorimetric measurements confirmed the presence of functional groups characteristic of proteins and carbohydrates on the BioSeNPs, suggesting the presence of EPS. Chemical synthesis of elemental selenium nanoparticles in the presence of EPS, extracted from selenite fed anaerobic granular sludge, yielded stable colloidal spherical selenium nanoparticles. Furthermore, extracted EPS, BioSeNPs, and chemically synthesized EPS-capped selenium nanoparticles had similar surface properties, as shown by ζ-potential versus pH profiles and isoelectric point measurements. This study shows that the EPS of anaerobic granular sludge form the organic layer present on the BioSeNPs synthesized by these granules. The EPS also govern the surface charge of these BioSeNPs, thereby contributing to their colloidal properties, hence affecting their fate in the environment and the efficiency of bioremediation technologies.
Previous spectroscopic research suggested that uranium(VI) adsorption to iron oxides is dominated by ternary uranyl-carbonato surface complexes across an unexpectedly wide pH range. Formation of such complexes would have a significant impact on the sorption behavior and mobility of uranium in aqueous environments. We therefore reinvestigated the identity and structural coordination of uranyl sorption complexes using a combination of U LIII-edge extended X-ray absorption fine structure (EXAFS) spectroscopy and iterative transformation factor analysis, which enhances the resolution in comparison to conventional EXAFS analysis. A range of conditions (pH, CO2 partial pressure, ionic strength) made it possible to quantify the variations in surface speciation. In the resulting set of spectral data (N=11) the variance is explained by only two components, which represent two structurally different types of surface complexes: (1) a binary uranyl surface complexwith a bidentate coordination to edges of Fe(O,OH)6 octahedra and (2) a uranyl triscarbonato surface complex where one carbonate ion bridges uranyl to the surface. This ternary type B complex differs from a type A complex where uranyl is directly attached to surface atoms and carbonate is bridged by uranyl to the surface. Both surface complexes agree qualitatively and quantitatively with predictions by a charge distribution (CD) model. According to this model the edge-sharing uranyl complex has equatorial ligands (-OH2, -OH, or one -CO3 group) that point away from the surface. The monodentate uranyl triscarbonato surface complex (type B) is relevant only at high pH and elevated pC0O. At these conditions, however, it is responsible for significant uranyl sorption, whereas standard models would predict only weak sorption. This paper presents the first spectroscopic evidence of this ternary surface complex, which has significant implications for immobilization of uranyl in carbonate-rich aqueous environments.
Complex formation and the coordination of zirconium with acetic acid were investigated with Zr K-edge extended X-ray absorption fine structure spectroscopy (EXAFS) and single-crystal diffraction. Zr K-edge EXAFS spectra show that a stepwise increase of acetic acid in aqueous solution with 0.1 M Zr(IV) leads to a structural rearrangement from initial tetranuclear hydrolysis species [Zr(OH)(OH)] to a hexanuclear acetate species Zr(O)(OH)(CHCOO). The solution species Zr(O)(OH)(CHCOO) was preserved in crystals by slow evaporation of the aqueous solution. Single-crystal diffraction reveals an uncharged hexanuclear cluster in solid Zr(μ-O)(μ-OH)(CHCOO)·8.5HO. EXAFS measurements show that the structures of the hexanuclear zirconium acetate cluster in solution and the solid state are identical.
We report the preparation of water-soluble organo-silica hybrid nanotubes templated by core-shell-corona structured triblock terpolymer cylindrical polymer brushes (CPBs). The CPBs consist of a polymethacrylate backbone, a poly(tert-butyl acrylate) (PtBA) core, a poly(3-(trimethoxysilyl)propyl acrylate) (PAPTS) shell, and a poly(oligo(ethylene glycol) methacrylate) (POEGMA) corona. They were prepared via the "grafting from" strategy by the combination of two living/controlled polymerization techniques: anionic polymerization for the backbone and atom transfer radical polymerization (ATRP) for the triblock terpolymer side chains. The monomers tBA, APTS, and OEGMA were consecutively grown from the pendant ATRP initiating groups along the backbone to spatially organize the silica precursor, the trimethoxysilyl groups, into a tubular manner. The synthesized core-shell-corona structured CPBs then served as a unimolecular cylindrical template for the in situ fabrication of water-soluble organo-silica hybrid nanotubes via base-catalyzed condensation of the PAPTS shell block. The formed tubular nanostructures were characterized by transmission electron microscopy (TEM), cryogenic TEM, and atomic force microscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.