Patterns of mitochondrial DNA (mtDNA) variation were used to analyse the population genetic structure of southwestern Indian Ocean green turtle (Chelonia mydas) populations. Analysis of sequence variation over 396 bp of the mtDNA control region revealed seven haplotypes among 288 individuals from 10 nesting sites in the Southwest Indian Ocean. This is the first time that Atlantic Ocean haplotypes have been recorded among any Indo-Pacific nesting populations. Previous studies indicated that the Cape of Good Hope was a major biogeographical barrier between the Atlantic and Indian Oceans because evidence for gene flow in the last 1.5 million years has yet to emerge. This study, by sampling localities adjacent to this barrier, demonstrates that recent gene flow has occurred from the Atlantic Ocean into the Indian Ocean via the Cape of Good Hope. We also found compelling genetic evidence that green turtles nesting at the rookeries of the South Mozambique Channel (SMC) and those nesting in the North Mozambique Channel (NMC) belong to separate genetic stocks. Furthermore, the SMC could be subdivided in two different genetic stocks, one in Europa and the other one in Juan de Nova. We suggest that this particular genetic pattern along the Mozambique Channel is attributable to a recent colonization from the Atlantic Ocean and is maintained by oceanic conditions in the northern and southern Mozambique Channel that influence early stages in the green turtle life cycle.
Marine turtles are renowned long-distance navigators, able to reach remote targets in the oceanic environment; yet the sensory cues and navigational mechanisms they employ remain unclear [1, 3]. Recent arena experiments indicated an involvement of magnetic cues in juvenile turtles' homing ability after simulated displacements [4, 5], but the actual role of geomagnetic information in guiding turtles navigating in their natural environment has remained beyond the reach of experimental investigations. In the present experiment, twenty satellite-tracked green turtles (Chelonia mydas) were transported to four open-sea release sites 100-120 km from their nesting beach on Mayotte island in the Mozambique Channel; 13 of them had magnets attached to their head either during the outward journey or during the homing trip. All but one turtle safely returned to Mayotte to complete their egg-laying cycle, albeit with indirect routes, and showed a general inability to take into account the deflecting action of ocean currents as estimated through remote-sensing oceanographic measurements [7]. Magnetically treated turtles displayed a significant lengthening of their homing paths with respect to controls, either when treated during transportation or when treated during homing. These findings represent the first field evidence for the involvement of geomagnetic cues in sea-turtle navigation.
SUMMARYMarine turtles are globally threatened. Crucial for the conservation of these large ectotherms is a detailed knowledge of their energy relationships, especially their at-sea metabolic rates, which will ultimately define population structure and size. Measuring metabolic rates in free-ranging aquatic animals, however, remains a challenge. Hence, it is not surprising that for most marine turtle species we know little about the energetic requirements of adults at sea. Recently, accelerometry has emerged as a promising tool for estimating activity-specific metabolic rates of animals in the field. Accelerometry allows quantification of the movement of animals (ODBA/PDBA, overall/partial dynamic body acceleration), which, after calibration, might serve as a proxy for metabolic rate. We measured oxygen consumption rates (V O2 ) of adult green turtles (Chelonia mydas; 142.1±26.9kg) at rest and when swimming within a 13m-long swim channel, using flow-through respirometry. We investigated the effect of water temperature (T w ) on turtle V O2 and tested the hypothesis that turtle body acceleration can be used as a proxy for V O2 . Mean massspecific V O2 (sV O2 ) of six turtles when resting at a T w of 25.8±1.0°C was 0.50±0.09ml min . sV O2 increased significantly with T w and activity level. Changes in sV O2 were paralleled by changes in respiratory frequency (f R ). Deploying bi-axial accelerometers in conjunction with respirometry, we found a significant positive relationship between sV O2 and PDBA that was modified by T w . The resulting predictive equation was highly significant (r 2 0.83, P<0.0001) and associated error estimates were small (mean algebraic error 3.3%), indicating that body acceleration is a good predictor of V O2 in green turtles. Our results suggest that accelerometry is a suitable method to investigate marine turtle energetics at sea.
The green turtle Chelonia mydas is classified as endangered because of global declines over the past few centuries due to human exploitation and habitat destruction, particularly the loss of nesting areas. We used the number of tracks as an indicator of breeding female abundance at their nesting sites to study the seasonality and trends of turtles breeding at 3 islands in the SW Indian Ocean: Europa, Tromelin and Grande Glorieuse, over 20 yr. On Tromelin, tracks were counted along the entire nesting beach, but on Europa and Grande Glorieuse counts were limited to a proportion of the island. Europa and Tromelin exhibited similar seasonal patterns, with a well-defined peak during the wet season (November-February), compared to a dry season peak for Grande Glorieuse (March-June). The main season was significantly longer on Grande Glorieuse (288 ± 43 d) than on Europa (218 ± 60 d), with Tromelin intermediate (252 ± 43 d). There was greater variation in the start of a season compared to the median and end at all sites throughout the study. Approximately 7178 ± 3053 (n = 19) tracks were recorded annually on the entire nesting beach on Tromelin, compared with 1480 ± 666 (n = 19) on 16% of nesting beaches on Grande Glorieuse and 1361 ± 903 (n = 23) on 26% of beaches on Europa. The number of tracks has increased significantly on Europa (3% yr -1 ) and Grande Glorieuse (6% yr -1 ). The increasing number of nesting turtles illustrates the effectiveness of conservation measures on sites formerly exploited by humans.
Aim Tracking technologies are often proposed as a method to elucidate the complex migratory life histories of migratory marine vertebrates, allowing spatially explicit threats to be identified and mitigated. We conducted a global analysis of foraging areas of adult green turtles (Chelonia mydas) subject to satellite tracking (n = 145) and the conservation designation of these areas according to International Union for Conservation of Nature criteria. LocationThe green turtle has a largely circumtropical distribution, with adults migrating up to thousands of kilometres between nesting beaches and foraging areas, typically in neritic seagrass or algal beds. MethodsWe undertook an assessment of satellite tracking projects that followed the movements of green turtles in tropical and subtropical habitats. This approach was facilitated by the use of the Satellite Tracking and Analysis Tool (http:// www.seaturtle.org) and the integration of publicly available data on Marine Protected Areas (MPAs). ResultsWe show that turtles aggregate in designated MPAs far more than would be expected by chance when considered globally (35% of all turtles were located within MPAs) or separately by ocean basin (Atlantic 67%, Indian 34%, Mediterranean 19%, Pacific 16%). Furthermore, we show that the size, level of protection and time of establishment of MPAs affects the likelihood of MPAs containing foraging turtles, highlighting the importance of large, well-established reserves.Main conclusions Our findings constitute compelling evidence of the worldwide effectiveness of extant MPAs in circumscribing important foraging habitats for a marine megavertebrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.