Major progress is being recorded regularly on both the technology and exploitation of automatic speech recognition (ASR) and spoken language systems. However, there are still technological barriers to flexible solutions and user satisfaction under some circumstances. This is related to several factors, such as the sensitivity to the environment (background noise), or the weak representation of grammatical and semantic knowledge.Current research is also emphasizing deficiencies in dealing with variation naturally present in speech. For instance, the lack of robustness to foreign accents precludes the use by specific populations. Also, some applications, like directory assistance, particularly stress the core recognition technology due to the very high active vocabulary (application perplexity). There are actually many factors affecting the speech realization: regional, sociolinguistic, or related to the environment or the speaker herself. These create a wide range of variations that may not be modeled correctly (speaker, gender, speaking rate, vocal effort, regional accent, speaking style, non-stationarity, etc.), especially when resources for system training are scarce. This paper outlines current advances related to these topics.
In the framework of Hidden Markov Models (HMM) or hybrid HMM/Arti cial Neural Network (ANN) systems, we present a new approach t o wards automatic speech recognition (ASR). The general idea is to divide up the full frequency band (represent e d i n t e r m s o f critical bands) into several subbands, compute phone probabilities for each subband on the basis of subband acoustic features, perform dynamic programming independently for each band, and merge the subband recognizers (recombining the respective, possibly weighted, scores) at some segmental level corresponding to temporal anchor points. The results presented in this paper con rm some preliminary tests reported earlier. On both isolated word and continuous speech tasks, it is indeed shown that even using quite simple recombination strategies, this subband ASR approach can yield at least comparable performance on clean speech while providing better robustness in the case of narrowband noise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.