TRIM5 is a RING domain-E3 ubiquitin ligase that restricts infection by HIV-1 and other retroviruses immediately following virus invasion of the target cell cytoplasm1,2. Antiviral potency correlates with TRIM5 avidity for the retrovirion capsid lattice3,4 and several reports indicate that TRIM5 plays a role in signal transduction5–7, but the precise mechanism of restriction is unknown8. Here we demonstrate that TRIM5 promotes innate immune signaling and that this activity is amplified by retroviral infection and interaction with the capsid lattice. Acting with the heterodimeric, ubiquitin-conjugating enzyme UBC13/UEV1A, TRIM5 catalyzes the synthesis of unattached K63-linked ubiquitin chains that activate the TAK1 (MAP3K7) kinase complex and stimulate AP-1 and NFκB signaling. Interaction with the HIV-1 capsid lattice greatly enhances the UBC13/UEV1A-dependent E3 activity of TRIM5 and challenge with retroviruses induces the transcription of AP-1 and NFκB-dependent factors with a magnitude that tracks with TRIM5 avidity for the invading capsid. Finally, TAK1 and UBC13/UEV1A contribute to capsid-specific restriction by TRIM5. Thus, the retroviral restriction factor TRIM5 has two additional activities that are linked to restriction: it constitutively promotes innate immune signaling and it acts as a pattern recognition receptor specific for the retrovirus capsid lattice.
A suite of crystal structures is reported for a cellular mRNA cap (guanine-N7) methyltransferase in complex with AdoMet, AdoHcy, and the cap guanylate. Superposition of ligand complexes suggests an in-line mechanism of methyl transfer, albeit without direct contacts between the enzyme and either the N7 atom of guanine (the attacking nucleophile), the methyl carbon of AdoMet, or the sulfur of AdoMet/AdoHcy (the leaving group). The structures indicate that catalysis of cap N7 methylation is accomplished by optimizing proximity and orientation of the substrates, assisted by a favorable electrostatic environment. The enzyme-ligand structures, together with new mutational data, fully account for the biochemical specificity of the cap guanine-N7 methylation reaction, an essential and defining step of eukaryotic mRNA synthesis.
Transcription and mRNA processing are regulated by phosphorylation and dephosphorylation of the C-terminal domain (CTD) of RNA polymerase II, which consists of tandem repeats of a Y 1 S 2 P 3 T 4 S 5 P 6 S 7 heptapeptide. Previous studies showed that members of the plant CTD phosphatase-like (CPL) protein family differentially regulate osmotic stress-responsive and abscisic acidresponsive transcription in Arabidopsis thaliana. Here we report that AtCPL1 and AtCPL2 specifically dephosphorylate Ser-5 of the CTD heptad in Arabidopsis RNA polymerase II, but not Ser-2. An N-terminal catalytic domain of CPL1, which suffices for CTD Ser-5 phosphatase activity in vitro, includes a signature DXDXT acylphosphatase motif, but lacks a breast cancer 1 CTD, which is an essential component of the fungal and metazoan Fcp1 CTD phosphatase enzymes. The CTD of CPL1, which contains two putative doublestranded RNA binding motifs, is essential for the in vivo function of CPL1 and includes a C-terminal 23-aa signal responsible for its nuclear targeting. CPL2 has a similar domain structure but contains only one double-stranded RNA binding motif. Combining mutant alleles of CPL1 and CPL2 causes synthetic lethality of the male but not the female gametes. These results indicate that CPL1 and CPL2 exemplify a unique family of CTD Ser-5-specific phosphatases with an essential role in plant growth and development.T ranscriptional induction of genes that encode stress tolerance determinants is an integral part of the survival strategy of plants in adverse environments. The Arabidopsis thaliana responsive to dehydration (RD) genes are prototypal outputs of stress signal integration activated by low temperature, hyperosmolarity, and the plant hormone abscisic acid (ABA). The stress-inducible promoter of the RD29a gene contains dehydration͞cold-responsive elements and ABA-responsive elements that are the targets of distinct families of DNA binding transcription factors (1, 2). The plant stress response is also regulated by proteins that impact the core RNA polymerase II (Pol II) transcriptional machinery, the mRNA maturation process, and chromatin structure (3-9). Analysis of Arabidopsis mutants that display hyperinduction of RD29a expression under stress conditions have identified a family of C-terminal domain (CTD) phosphatase-like (CPL) genes that negatively regulate stressresponsive transcription (5, 6). The CPL1 and CPL3 genes discovered in the screen for hyperinduction are so named because they encode large polypeptides (967 and 1,241 aa, respectively) with local primary structure similarity to the Fcp1 family of fungal and metazoan protein serine phosphatases, which regulate transcription by dephosphorylating the CTD of the largest subunit of RNA Pol II (10).The Pol II CTD is composed of a tandemly repeated heptapeptide of consensus sequence Y . The number of CTD heptad repeats varies widely among species and correlates roughly with evolutionary complexity; e.g., mammals have 52 repeats, Drosophila has 42 repeats, fission yeast Schizosacc...
The template for paramyxovirus RNA synthesis is not naked RNA but the helical nucleocapsid core of the virus, in which each nucleocapsid protein (N protein) is predicted to be associated with precisely 6 nucleotides (nt) (11). Presumably as a consequence of this association, paramyxovirus genomes are replicated efficiently only when they are a multiple of 6 nt in length, and this has been dubbed the "rule of six" (4). The structure of paramyxovirus nucleocapsids is thus central to understanding how this rule might operate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.