Background Coronaviruses can induce the production of interleukin (IL)-1β, IL-6, tumour necrosis factor, and other cytokines implicated in autoinflammatory disorders. It has been postulated that anakinra, a recombinant IL-1 receptor antagonist, might help to neutralise the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related hyperinflammatory state, which is considered to be one cause of acute respiratory distress among patients with COVID-19. We aimed to assess the off-label use of anakinra in patients who were admitted to hospital for severe forms of COVID-19 with symptoms indicative of worsening respiratory function.Methods The Ana-COVID study included a prospective cohort from Groupe Hospitalier Paris Saint-Joseph (Paris, France) and a historical control cohort retrospectively selected from the Groupe Hospitalier Paris Saint-Joseph COVID cohort, which began on March 18, 2020. Patients were included in the prospective cohort if they were aged 18 years or older and admitted to Groupe Hospitalier Paris Saint-Joseph with severe COVID-19-related bilateral pneumonia on chest x-ray or lung CT scan. The other inclusion criteria were either laboratory-confirmed SARS-CoV-2 or typical lung infiltrates on a lung CT scan, and either an oxygen saturation of 93% or less under oxygen 6 L/min or more, or aggravation (saturation ≤93% under oxygen 3 L/min) with a loss of 3% of oxygen saturation in ambient air over the previous 24 h. The historical control group of patients had the same inclusion criteria. Patients in the anakinra group were treated with subcutaneous anakinra (100 mg twice a day for 72 h, then 100 mg daily for 7 days) as well as the standard treatments at the institution at the time. Patients in the historical group received standard treatments and supportive care. The main outcome was a composite of either admission to the intensive care unit (ICU) for invasive mechanical ventilation or death.The main analysis was done on an intention-to-treat basis (including all patients in the anakinra group who received at least one injection of anakinra). FindingsFrom March 24 to April 6, 2020, 52 consecutive patients were included in the anakinra group and 44 historical patients were identified in the Groupe Hospitalier Paris Saint-Joseph COVID cohort study. Admission to the ICU for invasive mechanical ventilation or death occurred in 13 (25%) patients in the anakinra group and 32 (73%) patients in the historical group (hazard ratio [HR] 0•22 [95% CI 0•11-0•41; p<0•0001). The treatment effect of anakinra remained significant in the multivariate analysis (HR 0•22 [95% CI 0•10-0•49]; p=0•0002). An increase in liver aminotransferases occurred in seven (13%) patients in the anakinra group and four (9%) patients in the historical group.Interpretation Anakinra reduced both need for invasive mechanical ventilation in the ICU and mortality among patients with severe forms of COVID-19, without serious side-effects. Confirmation of efficacy will require con trolled trials.
Introduction Coronavirus disease 2019 (COVID-19) has been associated with cardiovascular complications and coagulation disorders. Previous studies reported pulmonary embolism (PE) in severe COVID-19 patients. Aim of the study was to estimate the prevalence of symptomatic PE in COVID-19 patients and to identify the clinical, radiological or biological characteristics associated with PE. Patients/methods We conducted a retrospective nested case-control study in 2 French hospitals. Controls were matched in a 1:2 ratio on the basis of age, sex and center. PE patients with COVID-19 were compared to patients in whom PE was ruled out (CTPA controls) and in whom PE has not been investigated (CT controls). Results PE was suspected in 269 patients among 1042 COVID-19 patients, and confirmed in 59 patients (5.6%). Half of PE was diagnosed at COVID-19 diagnosis. PE patients did not differ from CT and CTPA controls for thrombosis risk factors. PE patients more often required invasive ventilation compared to CTPA controls (odds ratio (OR) 2.79; 95% confidence interval (CI) 1.33–5.84) and to CT controls (OR 8.07; 95% CI 2.70–23.82). PE patients exhibited more extensive parenchymal lesions (>50%) than CT controls (OR 3.90; 95% CI 1.54–9.94). D-dimer levels were 5.1 (95% CI 1.90–13.76) times higher in PE patients than CTPA controls. Conclusions Our results suggest a PE prevalence in COVID-19 patients close to 5% in the whole population and to 20% of the clinically suspected population. PE seems to be associated with more extensive lung damage and to require more frequently invasive ventilation.
Theranostic assays are based on single-gene testing, but the ability of next-generation sequencing (NGS) to interrogate numerous genetic alterations will progressively replace single-gene assays. Although NGS was evaluated to screen for theranostic mutations, its usefulness in clinical practice on large series of samples remains to be demonstrated. NGS performance was assessed following guidelines. TaqMan probes and NGS were compared for their ability to detect EGFR and KRAS mutations, and NGS mutation profiles were analyzed on a large series of non-small-cell lung cancers (n = 1343). The R correlation between expected and measured allelic ratio, using commercial samples, was >0.96. Mutation detection threshold was 2% for 10 ng of DNA input. κ Scores for TaqMan versus NGS were 0.99 (95% CI, 0.97-1.00) for EGFR and 0.98 (95% CI, 0.97-1.00) for KRAS after exclusion of rare EGFR (n = 40) and KRAS (n = 60) mutations. NGS identified 693 and 292 mutations in validated and potential oncogenic drivers, respectively. Significant associations were found between EGFR and PI3KCA or CTNNB1 and between KRAS and STK11. Potential oncogenic driver mutations or gene amplifications were more frequent in validated oncogenic driver nonmutated samples. This work is a proof of concept that targeted NGS is accessible in routine screening, including large screening, at reasonable cost. Clinical data should be collected and implemented in specific databases to make molecular data meaningful for direct patients' benefit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.