1:30 and 1:50 model-scale ice tests of an ice-resistant Spar design were carried out to determine the loads on the Spar in level ice and ice ridges. Due to limitations in the depth of the ice test facility, the hull draft and mooring system were truncated. The 1:30 scale model was towed through the ice on a fixed and compliant dynamometer. The stiffness characteristics of the compliant dynamometer matched the horizontal stiffness of the full-scale mooring system. The purpose of these tests was to compare the mooring and ice loads measured in fixed and compliant conditions. The 1:50 scale model was truncated by 70 m. Its mooring system was modeled using a four-line system designed to give the same global restoring forces as the full-scale mooring system. The model was fitted with vertical plates on the exterior of the hull to compensate for loss of added mass and added moment of inertia. A limited number of tests were carried out at the two model scales in the same ice conditions to investigate scaling effects. The mooring and ice loads measured in the fixed and compliant conditions were found to be similar, indicating that loads estimated, assuming the structure is fixed, provide good estimates. Good agreement between the two models was also found for the tests carried out in the same ice conditions, suggesting that the scaling effects may be negligible.
The Yemen LNG Company Ltd. is working on the design and construction of an LNG plant in the Republic of Yemen. The LNG plant, located at Balhaf on the Gulf of Aden, includes a jetty approximately 750 m from the shore to allow loading of LNG carriers. The bathymetry around the jetty is very complex and includes a large variation in water depth along the berth. Furthermore a cape near the jetty affects the incoming wave conditions. Deltares (formerly WL | Delft Hydraulics), together with MARIN, carried out a study of combined hydrodynamic scale model tests and computer simulations. The aim of the project was to determine the limiting environmental conditions for safe mooring of the LNG carriers at the jetty. The hydrodynamic scale model tests at Deltares focused on an accurate modeling of the wave conditions at the jetty and the motion response of the moored ship. To achieve this, the bathymetry around the jetty was modeled in detail, including the cape partially shielding the jetty from incoming waves from the open sea. Wind was applied to the moored ship as constant forces. The time-domain computer simulations were carried out by MARIN, using their TERMSIM simulation model. After calibration against scale model test results, the numerical model was used to quantify the effect of gusting wind for all environmental conditions and all ships as tested in the basin. The results of the scale model tests, corrected for the effect of gusting wind, indicated that the vessel can stay safely moored at the jetty in quite severe conditions. This leads to a high jetty availability, which is a favorable outcome of the project. After describing, in a general way, the methodology and results of the project, this paper focuses on the comparison of the results of the model tests with those of the computer simulations. This comparison showed that the low frequency effects, both excitation and response, in the complex bathymetry that was considered here, are very complex and beyond the present numerical modeling capabilities. Therefore, in the short term, physical model testing will remain necessary for an accurate prediction of the moored ship’s response in such situations. For the longer term the development of additional analysis and simulation methods is required.
The Vortex Induced Motion (VIM) phenomenon is one of the well-known and important behavior experienced by all Floating Production Systems (FPSs) in operation under the effect of uniform current. In this phenomenon, under the effect of the formed vortices around the FPS hull, the platform oscillates primarily in a direction perpendicular to the flow resulting in a significant fatigue damage to the risers and the station keeping mooring system. Scale towing tank test has been the standard industry tool for predicting the VIM response, but it has its own limitations and has showed to significantly overpredict the VIM response when compared to the field measurements. In this paper, an interactive numerical-experimental approach has been developed to more accurately predict the VIM response and avoid the shortcomings of the model tests to bridge the gap between the model test predictions and the field measurements. Numerical and experimental data are presented to demonstrate the application and advantages of the proposed approach
Polyester based mooring systems offer unique challenges from design, analysis and installation perspective. Non-linear elongation behavior of the fiber is key to these challenges. A good understanding of the fiber elongation characteristics is critical to the design of a robust and efficient mooring system. Mooring systems are one of the primary contributors to the CAPEX of the Floating Production Units (FPU) and the drive to develop cost effective systems has led to improvements/changes to mooring systems. Off-vessel tensioning has been in use for several years, but the option has recently received more in-depth consideration. Off-vessel tensioning is becoming the standard for floating systems with the elimination of on-vessel tensioning systems. The elimination of on-vessel tensioning system brings upon new challenges in terms of mooring line installation and tensioning. A key driver for these systems is the polyester rope pre-load criteria primarily used to remove construction stretch and jump the creep curve that the system may experience. The challenges to each project are unique, however, understanding and assessing the key design impacts will be beneficial to the industry. This paper focuses on the design of a polyester based mooring system with focus on polyester fiber elongation characteristics and its impact on the design and installation. A polyester test program is established to understand the rope elongation behavior and impact of various pre-load levels. Installation assessment is also performed to understand the installation vessel requirements to achieve various pre-loads. Based on the studies, design updates are made to the mooring system and a novel two tension regime mooring system is proposed. Design impact of the two pre-tension system on various design criterions are evaluated and presented in this paper. The paper also makes recommendations on target pre-load and elongation to be considered in systems that do not plan to re-tension their system post installation. Authors appreciate that recommendations and observations reported may not be applicable for all types of floaters and mooring system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.