Vortex-induced vibration (VIV) of marine risers poses a significant challenge as the offshore oil and gas industry moves into deep water. A time-domain analysis tool has been developed to predict the VIV of marine risers based on a forcing algorithm and by making full use of the available high Reynolds number experimental data. In the formulation, the hydrodynamic damping is not treated as a special case but simply an extension of the experimentally derived lift curves. The forcing algorithm was integrated into a mooring analysis program based on the global coordinate-based finite element method. At each time step, the added mass, lifting force, and drag force coefficients and their corresponding loads are computed for each element. Validation studies have been carried out for a full-scale rigid riser segment and a model-scale flexible riser. The numerical results were compared with experimental data and solutions by other programs.
This paper presents preliminary results from a computer program for simulating ship maneuvering in ice covered waters. The program is derived from two programs, Ship Maneuvering Laboratory (SML) and a discrete element numerical modeling program (DECICE). SML is an in-house code developed by Oceanic Consulting Corporation for simulating ship maneuvering in open water. It is based on a ship maneuvering model originally developed by the Japanese mathematical maneuvering group (MMG). DECICE is a discrete element method which was developed by INTERA Technologies and is used to calculate the ice loads on the ship and the interactions between ice pieces. The paper presents a summary of the mathematical methods used together with the results of some case studies for ships EXM004, PSM004 and Esso Osaka Tanker. These computer predictions include turning circle and Zig-Zag maneuvers. Comparisons and discussion of the simulated results between cases with and without ice are also provided.
1:30 and 1:50 model-scale ice tests of an ice-resistant Spar design were carried out to determine the loads on the Spar in level ice and ice ridges. Due to limitations in the depth of the ice test facility, the hull draft and mooring system were truncated. The 1:30 scale model was towed through the ice on a fixed and compliant dynamometer. The stiffness characteristics of the compliant dynamometer matched the horizontal stiffness of the full-scale mooring system. The purpose of these tests was to compare the mooring and ice loads measured in fixed and compliant conditions. The 1:50 scale model was truncated by 70 m. Its mooring system was modeled using a four-line system designed to give the same global restoring forces as the full-scale mooring system. The model was fitted with vertical plates on the exterior of the hull to compensate for loss of added mass and added moment of inertia. A limited number of tests were carried out at the two model scales in the same ice conditions to investigate scaling effects. The mooring and ice loads measured in the fixed and compliant conditions were found to be similar, indicating that loads estimated, assuming the structure is fixed, provide good estimates. Good agreement between the two models was also found for the tests carried out in the same ice conditions, suggesting that the scaling effects may be negligible.
Accurate generation of the primary waves and the reproduction of the group-induced second-order low and high frequency waves have been considered essential for physical model test in the laboratory. In the laboratory when bi-chromatic primary waves are generated the required bounded waves will be generated naturally at the difference frequency. In addition to that several unwanted free waves are also generated. The free waves, having the same frequency of the bounded wave are reproduced due to mismatch of the boundary conditions at the wave paddle. The other two types of free waves are due to the wave paddle displacement and the local disturbances.We carried out an extensive experimental program to identify the second order spurious waves in shallow water in the Offshore Engineering Basin (OEB) at the Institute for Ocean Technology (IOT) of National Research Council (NRC) Canada. In the experiments water depths are used in the range of 0.3m to 0.8m. The wave periods also have varied from 0.9s to 2.22s. In the experiments mono-and bi-chromatic waves are used. The drive signals of the wave-maker are generated using first-order and second-order wave generation techniques. Total 14 wave probes are used to capture the data in the wave tank. A NRC-IOT code is used to isolate the primary waves, the bounded waves and the unwanted free waves from the measured data at each wave probe. The measured data are analyzed in this paper to illustrate the differences in the waves generated by two different generation techniques.2
Subsea jumpers are susceptible to in-line and/or cross-flow vortex induced vibration (VIV) fatigue damage due to sea bottom currents. However, there is no proven industry standard design analysis methodology currently available specifically for assessing subsea jumper VIV response. In 2012, ExxonMobil conducted a jumper VIV model test to assess the validity of potential jumper VIV prediction approaches. A towing test rig was used to expose a small scale jumper model to flow conditions simulating uniform bottom currents. The jumper model was instrumented to acquire acceleration, bending strain and end connection load data. Several accelerometers and strain gauges were installed to enable reconstruction of static and dynamic deformations and bending deflections along the jumper model. Towing tests at different orientations and tow speeds were performed on both a bare pipe model and a straked pipe model. The data were analyzed to examine the frequencies and amplitudes of the jumper vibration. The data from these experiments provide a benchmark for validating jumper VIV prediction approaches. In this paper, the model test program is presented including model testing philosophy, jumper design and fabrication, and high level model test results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.