The science operations of the spacecraft and remote sensing instruments for the Martian Moon eXploration (MMX) mission are discussed by the mission operation working team. In this paper, we describe the Phobos observations during the first 1.5 years of the spacecraft’s stay around Mars, and the Deimos observations before leaving the Martian system. In the Phobos observation, the spacecraft will be placed in low-altitude quasi-satellite orbits on the equatorial plane of Phobos and will make high-resolution topographic and spectroscopic observations of the Phobos surface from five different altitudes orbits. The spacecraft will also attempt to observe polar regions of Phobos from a three-dimensional quasi-satellite orbit moving out of the equatorial plane of Phobos. From these observations, we will constrain the origin of Phobos and Deimos and select places for landing site candidates for sample collection. For the Deimos observations, the spacecraft will be injected into two resonant orbits and will perform many flybys to observe the surface of Deimos over as large an area as possible.
Graphical Abstract
The Japanese MMX sample return mission to Phobos by JAXA will carry a rover developed by CNES and DLR that will be deployed on Phobos to perform in situ analysis of the Martian moon’s surface properties. Past images of the surface of Phobos show that it is covered by a layer of regolith. However, the mechanical and compositional properties of this regolith are poorly constrained. In particular, from current remote images, very little is known regarding the particle sizes, their chemical composition, the packing density of the regolith as well as other parameters such as friction and cohesion that influence surface dynamics. Understanding the properties and dynamics of the regolith in the low-gravity environment of Phobos is important to trace back its history and surface evolution. Moreover, this information is also important to support the interpretation of data obtained by instruments onboard the main MMX spacecraft, and to minimize the risks involved in the spacecraft sampling operations. The instruments onboard the Rover are a Raman spectrometer (RAX), an infrared radiometer (miniRad), two forward-looking cameras for navigation and science purposes (NavCams), and two cameras observing the interactions of regolith and the rover wheels (WheelCams). The Rover will be deployed before the MMX spacecraft samples Phobos’ surface and will be the first rover to drive on the surface of a Martian moon and in a very low gravity environment.
Graphic Abstract
The Japanese MMX sample return mission to Phobos by JAXA will carry a Rover developed by CNES and DLR that will be deployed on Phobos to perform in-situ analysis of the Martian moon's surface properties. Past images of the surface of Phobos show that it is covered by a layer of regolith. However, the mechanical and compositional properties of this regolith are poorly constrained. In particular nothing is known regarding the particle sizes, their chemical composition, the packing density of the regolith as well as other frictional parameters and surface dynamics from current remote images. Understanding the properties and dynamics of the regolith in the low-gravity environment of Phobos is important to trace back its history and surface evolution. Moreover, this information is also important to support the interpretation of data obtained by instruments onboard the main spacecraft and to minimize the risks involved in the sampling by the spacecraft. The instruments onboard the Rover are an infrared radiometer (miniRad), a Raman spectrometer (RAX), two cameras looking forwards for navigation and science purposes (NavCams), and two cameras observing the flow of regolith around the rover wheels (WheelCams). The Rover will be deployed before the sampling of Phobos' surface by MMX spacecraft and will be the first rover driving on a Martian moon and in a low-gravity environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.