Membrane potential changes and/or discharges from 36 inspiratory neurons were recorded intracellularly in the dorsal respiratory group (DRG; i.e., the ventrolateral subdivision of the nucleus tractus solitarii) in decerebrate, paralyzed, and ventilated cats. Electrical activities were recorded from both somata (n = 10) and axons (n = 26). Activities during quiet breathing were compared with those observed during fictive coughing and swallowing evoked by repetitive electrical stimulation of afferent fibers of the superior laryngeal nerve (SLN). These nonrespiratory behaviors were evident in paralyzed animals as characteristic discharge patterns of the phrenic, abdominal, and hypoglossal nerves. Twenty-six neurons exhibiting antidromic action potentials in response to electrical stimuli applied to the cervical (C3-5) spinal cord were classified as inspiratory bulbospinal neurons (IBSNs). These neurons were considered as premotoneurons. The remaining 10 inspiratory neurons (I-NAA) were not antidromically activated by electrical stimuli applied to either cervical spinal cord or ipsilateral cervical vagus. These neurons are thought to be propriobulbar neurons. We recorded the activity of 31 DRG inspiratory neurons (24 IBSNs and 7 I-NAA) during coughing. All but one (a late-recruited IBSN) discharged a burst of action potentials during the coughing-related phrenic nerve activity. Typically, ramp-like membrane depolarization trajectories and discharge frequencies during coughing were similar to those observed during inspiration. We recorded the activity of 33 DRG inspiratory neurons (23 IBSNs and 10 I-NAA) during swallowing. Most (28/33) neurons were briefly activated, i.e., discharged a burst of action potentials during swallowing, but peak discharge frequency decreased compared with that measured during inspiration. The membrane potentials of nine somata exhibited a brief bell-shaped depolarization during swallowing, the amplitude of which was similar to that observed during inspiration. These results suggest that some inspiratory premotoneurons and propriobulbar neurons of the DRG might be involved in nonrespiratory motor activities, even if clearly antagonistic to breathing (e.g., swallowing). We postulate the existence in the medulla oblongata of adult mammals of neurons exhibiting a "functional flexibility".
1. The patterns of membrane potential changes of phrenic motoneurons were compared during fictive vomiting, fictive coughing, and fictive swallowing in decerebrate, paralyzed cats. These fictive behaviors were identified by motor nerve discharge patterns similar to those recorded from the muscles of nonparalyzed animals. Phrenic motoneurons (n = 54) were identified by antidromic activation from the thoracic phrenic nerve. Intracellular recordings were obtained from 27 motoneurons during fictive vomiting, 40 during fictive coughing, and 27 during fictive swallowing. Sixteen motoneurons were recorded during both fictive coughing and fictive swallowing, eight during both fictive coughing and fictive vomiting, and two during both fictive vomiting and fictive swallowing. Seven motoneurons were studied during all three behaviors. 2. Fictive vomiting, typically evoked by electrical stimulation of abdominal vagal afferents, was characterized by a series of bursts of coactivation of phrenic and abdominal motor nerves, culminating in an expulsion phase in which abdominal discharge was prolonged both with respect to phrenic discharge and to abdominal discharge during the preceding retching phase. During fictive vomiting, phrenic motoneurons depolarized abruptly, and the amplitude of depolarization was significantly greater than during control inspirations. They then repolarized slowly throughout the phrenic burst, rapidly repolarizing at the end of each phrenic burst during retching and reaching a level similar to that observed during expiration. During the expulsion phase, the pattern was initially the same. However, after the cessation of phrenic discharge, the membrane potential repolarized slowly until the end of the abdominal burst, exhibiting greater synaptic noise than during expiration. One phrenic motoneuron, presumably innervating the periesophageal region of the diaphragm, received a strong hyperpolarization just before the onset of the emetic episode and fired for shorter periods during fictive vomiting than did other phrenic motoneurons.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.