We present an abstract method for deriving decay estimates on the resolvents and semigroups of non-symmetric operators in Banach spaces in terms of estimates in another smaller reference Banach space. This applies to a class of operators writing as a regularizing part, plus a dissipative part. The core of the method is a high-order quantitative factorization argument on the resolvents and semigroups. We then apply this approach to the Fokker-Planck equation, to the kinetic Fokker-Planck equation in the torus, and to the linearized Boltzmann equation in the torus.We finally use this information on the linearized Boltzmann semigroup to study perturbative solutions for the nonlinear Boltzmann equation. We introduce a non-symmetric energy method to prove nonlinear stability in this context in L 1 v L ∞ x (1 + |v| k ), k > 2, with sharp rate of decay in time.As a consequence of these results we obtain the first constructive proof of exponential decay, with sharp rate, towards global equilibrium for the full nonlinear Boltzmann equation for hard spheres, conditionally to some smoothness and (polynomial) moment estimates. This improves the result in [32] where polynomial rates at any order were obtained, and solves the conjecture raised in [91,29,86] about the optimal decay rate of the relative entropy in the H-theorem. (2000): 47D06 One-parameter semigroups and linear evolution equations [See also 34G10, 34K30], 35P15 Estimation of eigenvalues, upper and lower bounds, 47H20 Semigroups of nonlinear operators [See also 37L05, 47J35, 54H15, 58D07], 35Q84 Fokker-Planck equations, 76P05 Rarefied gas flows, Boltzmann equation [See also 82B40, 82C40, 82D05]. Mathematics Subject Classification
Abstract. This paper is devoted to the study of propagation of chaos and mean-field limits for systems of indistinguable particles, undergoing collision processes. The prime examples we will consider are the many-particle jump processes of Kac and McKean [42,53] giving rise to the Boltzmann equation. We solve the conjecture raised by Kac [42], motivating his program, on the rigorous connection between the long-time behavior of a collisional many-particle system and the one of its mean-field limit, for bounded as well as unbounded collision rates.Motivated by the inspirative paper by Grünbaum [35], we develop an abstract method that reduces the question of propagation of chaos to that of proving a purely functional estimate on generator operators (consistency estimates), along with differentiability estimates on the flow of the nonlinear limit equation (stability estimates). This allows us to exploit dissipativity at the level of the mean-field limit equation rather than the level of the particle system (as proposed by Kac).Using this method we show: (1) Quantitative estimates, that are uniform in time, on the chaoticity of a family of states. (2) Propagation of entropic chaoticity, as defined in [10]. (3) Estimates on the time of relaxation to equilibrium, that are independent of the number of particles in the system. Our results cover the two main Boltzmann physical collision processes with unbounded collision rates: hard spheres and true Maxwell molecules interactions. The proof of the stability estimates for these models requires significant analytic efforts and new estimates.
Our starting point is a selection-mutation equation describing the adaptive dynamics of a quantitative trait under the influence of an ecological feedback loop. Based on the assumption of small (but frequent) mutations we employ asymptotic analysis to derive a Hamilton-Jacobi equation. Well-established and powerful numerical tools for solving the Hamilton-Jacobi equations then allow us to easily compute the evolution of the trait in a monomorphic population when this evolution is continuous but also when the trait exhibits a jump. By adapting the numerical method we can, at the expense of a significantly increased computing time, also capture the branching event in which a monomorphic population turns dimorphic and subsequently follow the evolution of the two traits in the dimorphic population. From the beginning we concentrate on a caricatural yet interesting model for competition for two resources. This provides the perhaps simplest example of branching and has the great advantage that it can be analyzed and understood in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.