The low-cycle fatigue behavior of two direct-aged versions of the nickel-based superalloy Inconel 718 (IN718DA) was examined in the low-strain amplitude regime at intermediate temperature. High variability in fatigue life was observed, and abnormally short lifetimes were systematically observed to be due to crack initiation at (sub)-surface non-metallic inclusions. However, crack initiation within (sub)-surface non-metallic inclusions did not necessarily lead to short fatigue life. The macro-to micro-mechanical mechanisms of deformation and damage have been examined by means of detailed microstructural characterization, tensile and fatigue mechanical tests, and in situ tensile testing. The initial stages of crack micro-propagation from cracked non-metallic particles into the surrounding metallic matrix occupies a large fraction of the fatigue life and requires extensive local plastic straining in the matrix adjacent to the cracked inclusions. Differences in microstructure that influence local plastic straining, i.e., the d-phase content and the grain size, coupled with the presence of non-metallic inclusions at the high end of the size distribution contribute strongly to the fatigue life variability. DAMIEN TEXIER, Postdoctoral Fellow, is with the Institut Pprime -UPR CNRS 3346 -ISAE-ENSMA,
This paper describes a knowledge-based method for the automatic design of more efficient turbine blades. An Artificial Neural Network (ANN) is used to construct an approximate model (response surface) using a database containing Navier–Stokes solutions for all previous designs. This approximate model is used for the optimization, by means of Simulated Annealing (SA), of the blade geometry, which is then analyzed by a Navier–Stokes solver. This procedure results in a considerable speed-up of the design process by reducing both the interventions of the operator and the computational effort. It is also shown how such a method allows the design of more efficient blades while satisfying both the aerodynamic and mechanical constraints. The method has been applied to different types of two-dimensional turbine blades, of which three examples are presented in this paper.
Fatigue crack initiation in the direct aged version of the nickel-based superalloy Inconel 718 has been investigated at room temperature in the low stress/very high cycle regime via ultrasonic fatigue testing. Three different microstructures have been examined at the same strain amplitude in order to understand the influence of non-metallic inclusions (NMIs), i.e. carbides, carbonitrides and nitrides, and Σ3 twin boundary density on lifetime and failure mode. A slight refinement in grain structure and a higher Σ3 twin boundary density is associated with substantial reductions in lifetime. Decreasing Σ3 twin boundary density for fine grain microstructures results in a change in crack initiation mechanism from strain localization within grains at the high end of the grain size distribution to cracking of NMIs. To study the early stages of crack initiation and growth, specimens with pre-cracked NMIs were also tested in order to examine the role of the surrounding grain structure. Pre-cracked NMIs mainly result in macroscopic failure initiation at NMIs independent of the wrought microstructure. However, pre-loading specimens within the plastic domain highlighted the competition in crack initiation mode between cracked-NMIs and favorably oriented twin boundaries. Crack arrest from most of the pre-cracked NMIs demonstrates that surrounding grain structure (grain orientation, local plasticity and roughness in the vicinity of crack tip due to pre-straining) play a key role in the fatigue life of components stressed in the nominal elastic regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.