SynopsisWe investigate the flowing behavior of dense suspensions of non-colloidal particles, by coupling macroscopic rheometric experiments and local velocity and concentration measurements through MRI techniques. We find that the flow is localized at low velocities, and that the material is inhomogeneous; the local laws inferred from macroscopic rheometric observations must then be reinterpreted in the light of these local observations. We show that the short time response to a velocity step allows to characterize dense suspensions locally: they have a purely viscous behavior, without any observable influence of friction. In the jammed zone, there may be a contact network, whereas in the sheared zone there are only hydrodynamic interactions: localization consists in a change in configuration at the grain scale. From the concentration and velocity profiles, we have provided for the first time local measurements of the concentration dependence of viscosity; we find a Krieger-Dougherty law η(φ) = η 0 (1 − φ/0.605) −2 . Shear induced migration is almost instantaneous and seems inconsistent with most observations: it would imply that the diffusion coefficients strongly depend on the concentration. We finally propose a simple constitutive law for dense suspensions, based on a purely viscous behavior, that accounts for all the macroscopic and local observations.
We review and compare the phenomenological aspects and physical origin of shear-localization and shear-banding in various material types, namely emulsions, suspensions, colloids, granular materials and micellar systems. It appears that shear-banding, which must be distinguished from the simple effect of coexisting static-flowing regions in yield stress fluids, occurs in the form of a progressive evolution of the local viscosity towards two significantly different values in two adjoining regions of the fluids in which the stress takes slightly different values. This suggests that from a global point of view shear-banding in these systems has a common physical origin: two physical phenomena (for example, in colloids, destructuration due to flow and restructuration due to aging) are in competition and, depending on the flow conditions, one of them becomes dominant and makes the system evolve in a specific direction.
DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
The transition from frictional to lubricated flows of a dense suspension of non-Brownian particles is studied. The pertinent parameter characterizing this transition is the Leighton number Le=eta(s)gamma / sigma, the ratio of lubrication to frictional forces. Le defines a critical shear rate below which no steady flow without localization exists. In the frictional regime the shear flow is localized. The lubricated regime is not simply viscous: the ratio of shear to normal stresses remains constant and the velocity profile has a universal form in both frictional and lubricated regimes. Finally, a discrepancy between local and global measurements of viscosity is identified, which suggests inhomogeneity of the material under flow.
Flows of dense emulsions show many complex features among which long range nonlocal effects pose problem for macroscopic characterization. In order to get round this problem, we study the flows of several dense emulsions, with droplet size ranging from 0.3 to 40µm, in a wide gap Couette geometry. We couple macroscopic rheometric experiments and local velocity measurements through MRI techniques. As concentration heterogeneities are expected in the wide gap Couette flows of multiphase materials, we also designed a new method to measure the local droplet concentration in emulsions with a MRI device. In contrast with dense suspensions of rigid particles where very fast migration occurs under shear in wide gap Couette flows, we show for the first time that no migration takes place in dense emulsions even for strain as large as 100000 in our systems. As a result of the absence of migration and of finite size effect, we are able to determine very precisely the local rheological behavior of several dense emulsions. As the materials are homogeneous, this behavior can also be inferred from purely macroscopic measurements. We thus suggest that properly analyzed purely macroscopic measurements in a wide gap Couette geometry can be used as a tool to study the local constitutive laws of dense emulsions. All behaviors are basically consistent with Herschel-Bulkley laws of index 0.5. The existence of a constitutive law accounting for all flows contrasts with previous results obtained within a microchannel by Goyon et al. [Nature 454, 84 (2008)]: the use of a wide gap Couette geometry is likely to prevent here from nonlocal finite size effects; it also contrasts with the observations of Bécu et al. [Phys. Rev. Lett. 96, 138302 (2006)].We also evidence the existence of discrepancies between a perfect Herschel-Bulkley behavior and the observed local behavior at the approach of the yield stress due to slow shear flows below the apparent yield stress in the case of a strongly adhesive emulsion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.