BACKGROUND The His-SYNC pilot trial was the first randomized comparison between His bundle pacing in lieu of a left ventricular lead for cardiac resynchronization therapy (His-CRT) and biventricular pacing (BiV-CRT), but was limited by high rates of crossover. OBJECTIVE To evaluate the results of the His-SYNC pilot trial utilizing treatment-received (TR) and per-protocol (PP) analyses. METHODS The His-SYNC pilot was a multicenter, prospective, single-blinded, randomized, controlled trial comparing His-CRT vs BiV-CRT in patients meeting standard indications for CRT (eg, NYHA II-IV patients with QRS .120 ms). Crossovers were required based on prespecified criteria. The primary endpoints analyzed included improvement in QRS duration, left ventricular ejection fraction (LVEF), and freedom from cardiovascular (CV) hospitalization and mortality. RESULTS Among 41 patients enrolled (aged 64 6 13 years, 38% female, LVEF 28%, QRS 168 6 18 ms), 21 were randomized to His-CRT and 20 to BiV-CRT. Crossover occurred in 48% of His-CRT and 26% of BiV-CRT. The most common reason for crossover from His-CRT was inability to correct QRS owing to nonspecific intraventricular conduction delay (n 5 5). Patients treated with His-CRT demonstrated greater QRS narrowing compared to BiV (125 6 22 ms vs Funding: None. Conflicts of Interest: Dr Gaurav Upadhyay has been a speaker for Abbott, Biotronik and Medtronic, and has been a consultant to Abbott, Biotronik, and Medtronic. Dr Pugazhendhi Vijayaraman has been consultant to Abbott, Biotronik, Boston Scientific, and Medtronic; he also has a patent pending for a His delivery tool. Dr Hemal Nayak has been a speaker for Medtronic, Biotronik, and Boston Scientific. Dr Nishant Verma has been a speaker for Biotronik and Medtronic. Dr Gopi Dandamudi has been a speaker and consultant for Medtronic and serves on the advisory board for Biotronik. Dr Parikshit Sharma has been a speaker for Medtronic and has been a consultant for Abbott and Biotronik. Dr Moeen Saleem has been a speaker for Abbott, Medtronic, and Boston Scientific. Dr Faiz Subzposh has been a consultant to Medtronic. Dr Zaid Aziz has been a speaker for Biotronik. Dr Richard Trohman has been a speaker for Abbott, AltaThera Pharmaceuticals, Boston Scientific, Daiichi Sankyo, and Medtronic; he has been an advisor to Boston Scientific; he has received research grants from
Background: Accurate and expedited identification of scar regions most prone to reentry is needed to guide ventricular tachycardia (VT) ablation. We aimed to prospectively assess outcomes of VT ablation guided primarily by the targeting of deceleration zones (DZ) identified by propagational analysis of ventricular activation during sinus rhythm. Methods: Patients with scar-related VT were prospectively enrolled in the University of Chicago VT Ablation Registry between 2016 and 2018. Isochronal late activation maps annotated to the latest local electrogram deflection were created with high-density multielectrode mapping catheters. Targeted ablation of DZ (>3 isochrones within 1cm radius) was performed, prioritizing later activated regions with maximal isochronal crowding. When possible, activation mapping of VT was performed, and successful ablation sites were compared with DZ locations for mechanistic correlation. Patients were prospectively followed for VT recurrence and mortality. Results: One hundred twenty patients (median age 65 years [59-71], 15% female, 50% nonischemic, median ejection fraction 31%) underwent 144 ablation procedures for scar-related VT. 57% of patients had previous ablation and epicardial access was employed in 59% of cases. High-density mapping during baseline rhythm was performed (2518 points [1615-3752] endocardial, 5049±2580 points epicardial) and identified an average of 2±1 DZ, which colocalized to successful termination sites in 95% of cases. The median total radiofrequency application duration was 29 min (21-38 min) to target DZ, representing ablation of 18% of the low-voltage area. At 12±10 months, 70% freedom from VT recurrence (80% in ischemic cardiomyopathy and 63% in nonischemic cardiomyopathy) was achieved. The overall survival rate was 87%. Conclusions: A novel voltage-independent high-density mapping display can identify the functional substrate for VT during sinus rhythm and guide targeted ablation, obviating the need for extensive radiofrequency delivery. Regions with isochronal crowding during the baseline rhythm were predictive of VT termination sites, providing mechanistic evidence that deceleration zones are highly arrhythmogenic, functioning as niduses for reentry.
BACKGROUND: Left ventricular assist device (LVAD) therapy improves the hemodynamics of advanced heart failure patients. However, it is unknown whether hemodynamic optimization improves clinical outcomes. The aim of this study was to investigate whether hemodynamic optimization reduces hospital readmission rate in LVAD patients. METHODS AND RESULTS: LVAD patients undergoing an invasive hemodynamic ramp test were prospectively enrolled and followed for 1 year. LVAD speed was optimized using a ramp test, targeting the following goals: central venous pressure <12 mm Hg, pulmonary capillary wedge pressure <18 mm Hg, and cardiac index >2.2 L/(min•m 2). The frequency and cause of hospital readmissions were compared between patients who achieved (optimized group) or did not achieve (nonoptimized group) these goals. Eighty-eight outpatients (median 61 years old, 53 male) underwent ramp testing 236 days after LVAD implantation, and 54 (61%) had optimized hemodynamics after LVAD speed adjustment. One-year survival after the ramp study was comparable in both groups (89% versus 88%). The total hospital readmission rate was lower in the optimized group compared with the nonoptimized group (1.15 versus 2.86 events/y, P<0.001). This result was predominantly because of a reduction in the heart failure readmission rate in the optimized group (0.08 versus 0.71 events/y, P=0.016). CONCLUSIONS: LVAD patients, in whom hemodynamics were optimized, had a significantly lower rate of hospital readmissions, primarily because of fewer heart failure admissions. These findings highlight the importance of achieving hemodynamic optimization in LVAD patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.