Complex signal transduction pathways underlie the myriad plant responses to attack by pathogens. Ca(2+) is a universal second messenger in eukaryotes that modulates various signal transduction pathways through stimulus-specific changes in its intracellular concentration. Ca(2+)-binding proteins such as calmodulin (CaM) detect Ca(2+) signals and regulate downstream targets as part of a coordinated cellular response to a given stimulus. Here we report the characterization of a tomato gene (APR134) encoding a CaM-related protein that is induced in disease-resistant leaves in response to attack by Pseudomonas syringae pv. tomato. We show that suppression of APR134 gene expression in tomato (Solanum lycopersicum), using virus-induced gene silencing (VIGS), compromises the plant's immune response. We isolated APR134-like genes from Arabidopsis, termed CML42 and CML43, to investigate whether they serve a functionally similar role. Gene expression analysis revealed that CML43 is rapidly induced in disease-resistant Arabidopsis leaves following inoculation with Pseudomonas syringae pv. tomato. Overexpression of CML43 in Arabidopsis accelerated the hypersensitive response. Recombinant APR134, CML42, and CML43 proteins all bind Ca(2+ )in vitro. Collectively, our data support a role for CML43, and APR134 as important mediators of Ca(2+)-dependent signals during the plant immune response to bacterial pathogens.
Many signalling pathways in plants are regulated by the second messenger calcium (Ca(2+)). In the standard model, Ca(2+)-sensor proteins, such as CaM (calmodulin), detect Ca(2+) signals and subsequently regulate downstream targets to advance the signal transduction cascade. In addition to CaM, plants possess many CMLs (CaM-like proteins) that are predicted to function as Ca(2+) sensors, but which remain largely uncharacterized. In the present study, we examined the biochemical properties, subcellular localization and tissue-specific distribution of Arabidopsis CML43. Our data indicate that CML43 displays characteristics typical of Ca(2+) sensors, including high-affinity Ca(2+) binding, conformational changes upon Ca(2+) binding that expose hydrophobic regions and stabilization of structure in the presence of Mg(2+) or Ca(2+). In vivo localization analysis demonstrates that CML43 resides in cytosolic and nuclear compartments. Transgenic plants expressing a CML43:GUS (β-glucoronidase) promoter reporter gene revealed that CML43 promoter activity is restricted almost exclusively to root tips under normal growth conditions. GUS reporter activity in these transgenic plants was strongly increased when exposed to the defence compound SA (salicylic acid). Furthermore, immunoblot analysis revealed that the CML43 protein accumulates following treatment with SA. Collectively, our findings suggest that CML43 functions as a Ca(2+) sensor in root tips during both normal growth and plant immune response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.