Arctic regions have experienced pronounced biological and biophysical transformations as a result of global change processes over the last several decades. Current hypotheses propose an elevated impact of those environmental changes on the biodiversity, community composition and metabolic processes of species. The effects on ecosystem function and services, particularly when invasive or toxigenic harmful species become dominant, can be expressed over a wide range of temporal and spatial scales in plankton communities. Our study focused on the comparison of molecular biodiversity of three size-fractions (micro-, nano-, picoplankton) in the coastal pelagic zone of West Greenland and their association with environmental parameters. Molecular diversity was assessed via parallel amplicon sequencing the 28S rRNA hypervariable D1/D2 region. We showed that biodiversity distribution within the area of Uummannaq Fjord, Vaigat Strait and Disko Bay differed markedly within and among size-fractions. In general, we observed a higher diversity within the picoplankton size fraction compared to the nano-and microplankton. In multidimensional scaling analysis, community composition of all three size fractions correlated with cell size, silicate and phosphate, chlorophyll a (chl a) and dinophysistoxin (DTX). Individually, each size fraction community composition also correlated with other different environmental parameters, i.e. temperature and nitrate. We observed a more homogeneous community of the picoplankton across all stations compared to the larger size classes, despite different prevailing environmental conditions of the sampling areas. This suggests that habitat niche occupation for larger-celled species may lead to higher functional trait plasticity expressed as an enhanced range of phenotypes, whereas smaller organisms may compensate for lower potential plasticity with higher diversity. The presence of recently identified toxigenic harmful algal bloom (HAB) species (such as Alexandrium fundyense and A. ostenfeldii) in the area points out the potential risk for this vulnerable ecosystem in a changing world.
Abstract. Arctic marine protist communities have been understudied due to challenging sampling conditions, in particular during winter and in deep waters. The aim of this study was to improve our knowledge on Arctic protist diversity through the year, in both the epipelagic (< 200 m depth) and mesopelagic zones (200–1000 m depth). Sampling campaigns were performed in 2014, during five different months, to capture the various phases of the Arctic primary production: January (winter), March (pre-bloom), May (spring bloom), August (post-bloom), and November (early winter). The cruises were undertaken west and north of the Svalbard archipelago, where warmer Atlantic waters from the West Spitsbergen Current meet cold Arctic waters from the Arctic Ocean. From each cruise, station, and depth, 50 L of seawater was collected, and the plankton was size-fractionated by serial filtration into four size fractions between 0.45–200 µm, representing picoplankton (0.45–3 µm), small and large nanoplankton (3–10 and 10–50 µm, respectively), and microplankton (50–200 µm). In addition, vertical net hauls were taken from 50 m depth to the surface at selected stations. The net hauls were fractionated into the large nanoplankton (10–50 µm) and microplankton (50–200 µm) fractions. From the plankton samples DNA was extracted, the V4 region of the 18S rRNA-gene was amplified by polymerase chain reaction (PCR) with universal eukaryote primers, and the amplicons were sequenced by Illumina high-throughput sequencing. Sequences were clustered into amplicon sequence variants (ASVs), representing protist genotypes, with the dada2 pipeline. Taxonomic classification was made against the curated Protist Ribosomal Reference database (PR2). Altogether, 6536 protist ASVs were obtained (including 54 fungal ASVs). Both ASV richness and taxonomic composition varied between size fractions, seasons, and depths. ASV richness was generally higher in the smaller fractions and higher in winter and the mesopelagic samples than in samples from the well-lit epipelagic zone during summer. During spring and summer, the phytoplankton groups diatoms, chlorophytes, and haptophytes dominated in terms of relative read abundance in the epipelagic zone. Parasitic and heterotrophic groups such as Syndiniales and certain dinoflagellates dominated in the mesopelagic zone all year, as well as in the epipelagic zone during the winter. The dataset is available at https://doi.org/10.17882/79823 (Egge et al., 2014).
Communities of microscopic dinoflagellates are omnipresent in aquatic ecosystems. Consequently, their traits drive community processes with profound effects on global biogeochemistry. Species traits are, however, not necessarily static but respond to environmental changes in order to maintain fitness and may differ with cell size that scales physiological rates. Comprehending such trait characteristics is necessary for a mechanistic understanding of plankton community dynamics and resulting biogeochemical impacts. Here, we used information theory to analyze metatranscriptomes of micro-and nano-dinoflagellate communities in three ecosystems. Measures of gene expression variations were set as a proxy to determine conserved and plastic community traits and the environmental influence on trait changes. Using metabarcoding, we further investigated if communities with a more similar taxon composition also express more similar traits. Our results indicate that plastic community traits mainly arise from membrane vesicle associated processes in all the environments we investigated. A specific environmental influence on trait plasticity was observed to arise from nitrogen availability in both size classes. Species interactions also appeared to be responsible for trait plasticity in the smaller-sized dinoflagellates. Additionally, the smaller-sized dinoflagellate communities are characterized by the expression of a large pool of habitat specific genes despite being taxonomically more similar across the habitats, in contrast to the microplanktonic assemblages that adapted to their environments by changing species composition. Our data highlight the functional diversification on the gene level as a signature of smaller sized dinoflagellates, nitrogen availability and species interactions as drivers of trait plasticity, and traits most likely linked to fitness and community performance.
Climate change alters environmental conditions that are expected to have a profound effect on the biodiversity, community composition, and metabolic processes of microeukaryotic plankton in Arctic and Subarctic coastal waters. The molecular biodiversity [large subunit (LSU) rRNA gene] of three plankton size-fractions (micro-, nano-, and picoplankton) from coastal waters of ice-influenced west Greenland was compared with fractions from ice-free northwest Iceland within their summer environmental context. Putative metabolic functions were determined by differentially expressed mRNA (metatranscriptomics) of the microplankton. Temperature and salinity variations were more closely correlated than inorganic macronutrients with metabolic functions and community composition. Temperature explained much of the community variance, approximately 20% among micro-and nanoplankton, whereas other environmental factors accounted for rather low fractional variance (<7%). Species of smaller cell-size were more evenly distributed (Pielou's evenness index J) across regions, with a higher diversity and total abundance, and thereby indicating high plasticity. The metatranscriptomic profiles in these respective microeukaryotic communities revealed that diatoms were more plastic in their gene expression than dinoflagellates, but dinoflagellates had a more diverse, albeit homogeneously expressed, gene pool. This could be interpreted as expression of alternative lifestyle strategies, whereby the functionally more conservative diatoms fill their niches primarily through variable resource use, whereas dinoflagellates apparently differentiate their niches through more diverse lifestyles. Patterns of microeukaryotic diversity are thus primarily associated with differences in metabolic function and activity of diatom-versus dinoflagellate-dominated communities in Arctic and Subarctic waters during summer.
Dinoflagellates and diatoms are among the most prominent microeukaryotic plankton groups, and they have evolved different functional traits reflecting their roles within ecosystems. However, links between their metabolic processes and functional traits within different environmental contexts warrant further study. The functional biodiversity of dinoflagellates and diatoms was accessed with metatranscriptomics using Pfam protein domains as proxies for functional processes. Despite the overall geographic similarity of functional responses, abiotic (i.e., temperature and salinity; 800 Pfam domains) and biotic (i.e., taxonomic group;~1500 Pfam domains) factors influencing particular functional responses were identified. Salinity and temperature were identified as the main drivers of community composition. Higher temperatures were associated with an increase of Pfam domains involved in energy metabolism and a decrease of processes associated with translation and the sulfur cycle. Salinity changes were correlated with the biosynthesis of secondary metabolites (e.g., terpenoids and polyketides) and signal transduction processes, indicating an overall strong effect on the biota. The abundance of dinoflagellates was positively correlated with nitrogen metabolism, vesicular transport and signal transduction, highlighting their link to biotic interactions (more so than diatoms) and suggesting the central role of species interactions in the evolution of dinoflagellates. Diatoms were associated with metabolites (e.g., isoprenoids and carotenoids), as well as lysine degradation, which highlights their ecological role as important primary producers and indicates the physiological importance of these metabolic pathways for diatoms in their natural environment. These approaches and gathered information will support ecological questions concerning the marine ecosystem state and metabolic interactions in the marine environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.