The production of reactive oxygen species (ROS) by neutrophils has a vital role in defence against a range of infectious agents, and is driven by the assembly of a multi-protein complex containing a minimal core of five proteins: the two membrane-bound subunits of cytochrome b(558) (gp91(phox) and p22(phox)) and three soluble factors (GTP-Rac, p47(phox) and p67(phox) (refs 1, 2). This minimal complex can reconstitute ROS formation in vitro in the presence of non-physiological amphiphiles such as SDS. p40(phox) has subsequently been discovered as a binding partner for p67(phox) (ref. 3), but its role in ROS formation is unclear. Phosphoinositide-3-OH kinases (PI(3)Ks) have been implicated in the intracellular signalling pathways coordinating ROS formation but through an unknown mechanism. We show that the addition of p40(phox) to the minimal core complex allows a lipid product of PI(3)Ks, phosphatidylinositol 3-phosphate (PtdIns(3)P), to stimulate specifically the formation of ROS. This effect was mediated by binding of PtdIns(3)P to the PX domain of p40(phox). These results offer new insights into the roles for PI(3)Ks and p40(phox) in ROS formation and define a cellular ligand for the orphan PX domain.
Evidence is emerging that estrogen receptor alpha (ERalpha) is central to the rapid transduction of estrogen signaling to the downstream kinase cascades; however, the mechanisms underlying this nongenomic function are not fully understood. Here we report a paradigm of ERalpha regulation through arginine methylation by PRMT1, which transiently methylates arginine 260 within the ERalpha DNA-binding domain. This methylation event is required for mediating the extranuclear function of the receptor by triggering its interaction with the p85 subunit of PI3K and Src. Furthermore, we find that the focal adhesion kinase (FAK), a Src substrate involved in the migration process, is also recruited in this complex. Our data indicate that the methylation of ERalpha is a physiological process occurring in the cytoplasm of normal and malignant epithelial breast cells and that ERalpha is hypermethylated in a subset of breast cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.