Infusion of fish oil-based (n-3) lipids may influence leukocyte function and plasma lipids in critical care patients. Twenty-one patients with sepsis requiring parenteral nutrition were randomized to receive an n-3 lipid emulsion rich in eicosapentaenoic acid and docosahexaenoic acid or a conventional (n-6) lipid emulsion (index fatty acid: arachidonic acid) for 5 days. The impact on plasma-free fatty acids, mononuclear leukocyte cytokine generation, and membrane fatty acid composition was examined. Cytokine synthesis by isolated mononuclear leukocyte was elicited by endotoxin. Before the onset of lipid infusion therapy, plasma-free fatty acid concentrations were greatly increased in septic patients, with arachidonic acid by far surpassing eicosapentaenoic acid and docosahexaenoic acid, a feature maintained during conventional lipid infusion. Within 2 days of fish oil infusion, free n-3 fatty acids increased, and the n-3/n-6 ratio was reversed, with rapid incorporation of n-3 fatty acids into mononuclear leukocyte membranes. Generation of proinflammatory cytokines by mononuclear leukocytes was markedly amplified during n-6 and was suppressed during n-3 lipid application. After termination of lipid administration, free n-3 fatty acid concentrations and mononuclear leukocyte cytokine synthesis returned to preinfusion values. Use of lipid infusions might allow us to combine intravenous alimentation with differential impact on inflammatory events and immunologic functions in patients with sepsis.
omega-3 vs. omega-6 lipid emulsions differentially influence the plasma free fatty acid profile with impact on neutrophil functions. Lipid-based parenteral nutrition in septic patients may thus exert profound influence on sequelae and status of immunocompetence and inflammation.
Monocyte-endothelium interaction is a fundamental process in many acute and chronic inflammatory diseases. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are fish oil-derived alternative (ω-3) precursor fatty acids implicated in the suppression of inflammatory events. We investigated their influence on rolling and adhesion of monocytes to human umbilical vein endothelial cells (HUVEC) under laminar flow conditions in vitro. Exposure of HUVEC to tumor necrosis factor (TNF-α) strongly increased 1) surface expression of intercellular adhesion molecule (ICAM-1), vascular cell adhesion molecule (VCAM-1), and E-selectin, 2) platelet-activating factor (PAF) synthesis as assessed by thrombin challenge, and 3) rate of rolling and adhesion of monocytes. Preincubation of HUVEC with EPA or DHA markedly suppressed PAF synthesis, monocyte rolling, and adherence, whereas expression of endothelial adhesion molecules was unchanged. Also, PAF receptor antagonists markedly suppressed the adhesion rate of monocytes, and EPA or DHA revealed no additional inhibitory capacity. In contrast, arachidonic acid partially reversed the effect of the antagonist. We conclude that ω-3 fatty acids suppress rolling and adherence of monocytes on activated endothelial cells in vitro by affecting endothelial PAF generation.
A novel bioreactor system was constructed to induce extracellular matrix (ECM) synthesis by intervertebral disc (ID) cells due to intermittent hydrostatic pressure. The developed system is completely sterilizable and reusable. It is viable for cultivation, immobilization, and stimulation of various other cell types and tissues especially for cartilage. The custom made lid allows long-run cultivation through semi-continuous operation. Manual interferences and therefore the risk of contamination are reduced. Sampling, medium changing and addition of supplements are easily performed from the connected conditioning vessel, which could be placed in an incubator.
For the present investigations nucleus pulposus cells from pigs were taken and immobilized in agarose to obtain three-dimensional cell matrix constructs which were subjected to intermittent hydrostatic pressure. Afterwards the construct was biochemically examined. The proven constituents of ECM were found to be released in dependence of the magnitude and profile of the applied pressure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.