Brain imaging has recently evidenced that the structural state of distinct reciprocal cortico-cerebellar fiber tracts, the dentato-thalamo-cortical tract (DTCT), and the cortico-ponto-cerebellar tract (CPCeT), significantly influences residual motor output in chronic stroke patients, independent from the level of damage to the corticospinal tract (CST). Whether such structural information might also directly relate to measures of cortical excitability is an open question. Eighteen chronic stroke patients with supratentorial ischemic lesions and 17 healthy controls underwent transcranial magnetic stimulation to assess recruitment curves of motor evoked potentials of both hemispheres. Diffusion-weighted imaging and probabilistic tractography were applied to reconstruct reciprocal cortico-cerebellar motor tracts between the primary motor cortex and the cerebellum. Tract-related microstructure was estimated by means of fractional anisotropy, and linear regression modeling was used to relate it to cortical excitability. The main finding was a significant association between cortical excitability and the structural integrity of the DTCT, the main cerebellar outflow tract, independent from the level of damage to the CST. A comparable relationship was neither detectable for the CPCeT nor for the healthy controls. This finding contributes to a mechanistic understanding of the putative supportive role of the cerebellum for residual motor output by facilitating cortical excitability after stroke.
The corticospinal tract is the most intensively investigated tract of the human motor system in stroke rehabilitative research. Diffusion-tensor-imaging gives insights into its microstructure, and transcranial magnetic stimulation assesses its excitability. Previous data on the interrelationship between both measures are contradictory. Correlative or predictive models which associate them with motor outcome are incomplete. Free water correction has been developed to enhance diffusion-tensor-imaging by eliminating partial volume with extracellular water, which could improve capturing stroke-related microstructural alterations, thereby also improving structure-function relationships in clinical cohorts. In the present cross-sectional study, data of eighteen chronic stroke patients and seventeen healthy controls, taken from a previous study on cortico-cerebellar motor tracts, were re-analysed: The data included diffusion-tensor-imaging data quantifying corticospinal tract microstructure with and without free water correction, transcranial magnetic stimulation data assessing recruitment curve properties of motor evoked potentials and detailed clinical data. Linear regression modelling was used to interrelate corticospinal tract microstructure, recruitment curves properties and clinical scores. The main finding of the present study was that free water correction substantially strengthens structure-function associations in stroke patients: Specifically, our data evidenced a significant association fractional anisotropy of the ipsilesional corticospinal tract and its excitability (p = 0.001, adj. R2=0.54), with free water correction explaining additional 20% in recruitment curve variability. For clinical scores, only free water correction leads to the reliable detection of significant correlations between ipsilesional corticospinal tract fractional anisotropy and residual grip (p = 0.001, adj. R2=0.70) and pinch force (p < 0.001, adj. R2=0.72). Finally, multimodal models can be improved by free water correction as well. This study evidences that corticospinal tract microstructure directly relates to its excitability in stroke patients. It also shows that unexplained variance in motor outcome is considerably reduced by free water correction arguing that it might serve as a powerful tool to improve existing models of structure-function associations and potentially also outcome prediction after stroke.
Ischemic stroke leads to excitability changes of the motor network as probed by means of transcranial magnetic stimulation (TMS). There is still limited data that shows to what extent structural alterations of the motor network might be linked to excitability changes. Previous results argue that the microstructural state of specific corticofugal motor tracts such as the corticospinal tract associate with cortical excitability in chronic stroke patients. The relationship between changes of cortical anatomy after stroke, as operationalized by means of decreases or increases in local cortical thickness (CT), has scarcely been addressed. In the present study, we re-analyzed TMS data and recruitment curve properties of motor evoked potentials and CT data in a group of 14 well-recovered chronic stroke patients with isolated supratentorial subcortical lesions. CT data of the stroke patients were compared to CT data of 17 healthy controls. Whole-brain and region-of-interest based analyses were conducted to relate CT data to measures of motor cortical excitability and clinical data. We found that stroke patients exhibited significantly reduced CT not only in the ipsilesional primary motor cortex but also in numerous secondary motor and non-motor brain regions, particularly in the ipsilesional hemisphere including areas along the central sulcus, the inferior frontal sulcus, the intraparietal sulcus, and cingulate cortices. We could not detect any significant relationship between the extent of CT reduction and stroke-related excitability changes of the motor network or clinical scores.
Background and Purpose: Cortical beta oscillations are reported to serve as robust measures of the integrity of the human motor system. Their alterations after stroke, such as reduced movement-related beta desynchronization in the primary motor cortex, have been repeatedly related to the level of impairment. However, there is only little data whether such measures of brain function might directly relate to structural brain changes after stroke. Methods: This multimodal study investigated 18 well-recovered patients with stroke (mean age 65 years, 12 males) by means of task-related EEG and diffusion-weighted structural MRI 3 months after stroke. Beta power at rest and movement-related beta desynchronization was assessed in 3 key motor areas of the ipsilesional hemisphere that are the primary motor cortex (M1), the ventral premotor area and the supplementary motor area. Template trajectories of corticospinal tracts (CST) originating from M1, premotor cortex, and supplementary motor area were used to quantify the microstructural state of CST subcomponents. Linear mixed-effects analyses were used to relate tract-related mean fractional anisotropy to EEG measures. Results: In the present cohort, we detected statistically significant reductions in ipsilesional CST fractional anisotropy but no alterations in EEG measures when compared with healthy controls. However, in patients with stroke, there was a significant association between both beta power at rest ( P =0.002) and movement-related beta desynchronization ( P =0.003) in M1 and fractional anisotropy of the CST specifically originating from M1. Similar structure-function relationships were neither evident for ventral premotor area and supplementary motor area, particularly with respect to their CST subcomponents originating from premotor cortex and supplementary motor area, in patients with stroke nor in controls. Conclusions: These data suggest there might be a link connecting microstructure of the CST originating from M1 pyramidal neurons and beta oscillatory activity, measures which have already been related to motor impairment in patients with stroke by previous reports.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.