The influence of strong winds on the quality of optical Particle Size Velocity (PARSIVEL) disdrometer measurements is examined with data from Hurricane Ike in 2008 and from convective thunderstorms observed during the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2) in 2010. This study investigates an artifact in particle size distribution (PSD) measurements that has been observed independently by six stationary PARSIVEL disdrometers. The artifact is characterized by a large number concentration of raindrops with large diameters (.5 mm) and unrealistic fall velocities (,1 m s 21 ). It is correlated with high wind speeds and is consistently observed by stationary disdrometers but is not observed by articulating disdrometers (instruments whose sampling area is rotated into the wind). The effects of strong winds are further examined with a tilting experiment, in which drops are dripped through the PARSIVEL sampling area while the instrument is tilted at various angles, suggesting that the artifact is caused by particles moving at an angle through the sampling area. Most of the time, this effect occurs when wind speed exceeds 20 m s 21 , although it was also observed when wind speed was as low as 10 m s 21 . An alternative quality control is tested in which raindrops are removed when their diameters exceed 8 mm and they divert from the fall velocity-diameter relationship. While the quality control does provide more realistic reflectivity values for the stationary disdrometers in strong winds, the number concentration is reduced compared to the observations with an articulating disdrometer.
Many of the world′s largest river deltas are sinking due to sediment loading, compaction, and tectonics but also recently because of groundwater extraction, hydrocarbon extraction, and reduced aggradation. Little is known, however, about the full spatial variability of subsidence rates in complex delta systems. This study reconstructs subsidence rates in the eastern portion of the Ganges-Brahmaputra Delta (GBD), Bangladesh, covering more than 10,000 km 2 at a high spatial resolution of 100 m. The map was produced using Interferometric Synthetic Aperture Radar (InSAR) covering the period 2007 to 2011. Eighteen Advanced Land Observing Satellite Phased-Array L-band SAR scenes were used to generate 30 interferograms calibrated with GPS. Interferograms were stacked to yield average subsidence rates over the study period. Small Baseline Subset-InSAR was then applied to validate the results against an additional GPS record from Dhaka, Bangladesh. Land subsidence of 0 to > 10 mm/yr is seen in Dhaka, with variability likely related to local variations in shallow subsurface sediment properties. Outside of the city, rates vary from 0 to > 18 mm/yr, with the lowest rates appearing primarily in Pleistocene Madhupur Clay and the highest rates in Holocene organic-rich muds. Results demonstrate that subsidence in this delta is primarily controlled by local stratigraphy, with rates varying by more than an order of magnitude depending on lithology. The ability of L-band InSAR to differentiate between stratigraphic units in this humid, vegetated subtropical river delta demonstrates the power of interferometry as a tool for studying the subsurface in deltaic environments.
Differential Interferometric Synthetic Aperture Radar is applied to the coast of the Yellow River delta (YRD) in China. Like many deltas, the coastline of the YRD is dominated by aquaculture. Advanced Land Observation Satellite Phased Array L‐Band Synthetic Aperture Radar (SAR) and Envisat Advanced SAR data acquired between 2007 and 2011 show that subsidence rates are as high as 250 mm/y at aquaculture facilities, likely due to groundwater pumping. These rates exceed local and global average sea level rise by nearly 2 orders of magnitude and suggest that subsidence and associated relative sea level rise may present a significant hazard for Asian megadeltas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.