BackgroundCREB3L1 (cAMP-responsive element-binding protein 3-like protein 1), a member of the unfolded protein response, has recently been identified as a metastasis suppressor in both breast and bladder cancer.MethodsQuantitative real time PCR (qPCR) and immunoblotting were used to determine the impact of histone deacetylation and DNA methylation inhibitors on CREB3L1 expression in breast cancer cell lines. Breast cancer cell lines and tumor samples were analyzed similarly, and CREB3L1 gene methylation was determined using sodium bisulfite conversion and DNA sequencing. Immunohistochemistry was used to determine nuclear versus cytoplasmic CREB3L1 protein. Large breast cancer database analyses were carried out to examine relationships between CREB3L1 gene methylation and mRNA expression in addition to CREB3L1 mRNA expression and prognosis.ResultsThis study demonstrates that the low CREB3L1 expression previously seen in highly metastatic breast cancer cell lines is caused in part by epigenetic silencing. Treatment of several highly metastatic breast cancer cell lines that had low CREB3L1 expression with DNA methyltransferase and histone deacetylase inhibitors induced expression of CREB3L1, both mRNA and protein. In human breast tumors, CREB3L1 mRNA expression was upregulated in low and medium-grade tumors, most frequently of the luminal and HER2 amplified subtypes. In contrast, CREB3L1 expression was repressed in high-grade tumors, and its loss was most frequently associated with triple negative breast cancers (TNBCs). Importantly, bioinformatics analyses of tumor databases support these findings, with methylation of the CREB3L1 gene associated with TNBCs, and strongly negatively correlated with CREB3L1 mRNA expression. Decreased CREB3L1 mRNA expression was associated with increased tumor grade and reduced progression-free survival. An immunohistochemistry analysis revealed that low-grade breast tumors frequently had nuclear CREB3L1 protein, in contrast to the high-grade breast tumors in which CREB3L1 was cytoplasmic, suggesting that differential localization may also regulate CREB3L1 effectiveness in metastasis suppression.ConclusionsOur data further strengthens the role for CREB3L1 as a metastasis suppressor in breast cancer and demonstrates that epigenetic silencing is a major regulator of the loss of CREB3L1 expression. We also highlight that CREB3L1 expression is frequently altered in many cancer types suggesting that it could have a broader role in cancer progression and metastasis.Electronic supplementary materialThe online version of this article (doi:10.1186/s13058-016-0672-x) contains supplementary material, which is available to authorized users.
BackgroundBreast cancer cell lines are frequently used as model systems to study the cellular properties and biology of breast cancer. Our objective was to characterize a large, commonly employed panel of breast cancer cell lines obtained from the American Type Culture Collection (ATCC 30-4500 K) to enable researchers to make more informed decisions in selecting cell lines for specific studies. Information about these cell lines was obtained from a wide variety of sources. In addition, new information about cellular pathways that are activated within each cell line was generated.MethodsWe determined key protein expression data using immunoblot analyses. In addition, two analyses on serum-starved cells were carried out to identify cellular proteins and pathways that are activated in these cells. These analyses were performed using a commercial PathScan array and a novel and more extensive phosphopeptide-based kinome analysis that queries 1290 phosphorylation events in major signaling pathways. Data about this panel of breast cancer cell lines was also accessed from several online sources, compiled and summarized for the following areas: molecular classification, mRNA expression, mutational status of key proteins and other possible cancer-associated mutations, and the tumorigenic and metastatic capacity in mouse xenograft models of breast cancer.ResultsThe cell lines that were characterized included 10 estrogen receptor (ER)-positive, 12 human epidermal growth factor receptor 2 (HER2)-amplified and 18 triple negative breast cancer cell lines, in addition to 4 non-tumorigenic breast cell lines. Within each subtype, there was significant genetic heterogeneity that could impact both the selection of model cell lines and the interpretation of the results obtained. To capture the net activation of key signaling pathways as a result of these mutational combinations, profiled pathway activation status was examined. This provided further clarity for which cell lines were particularly deregulated in common or unique ways.ConclusionsThese two new kinase or “Kin-OMIC” analyses add another dimension of important data about these frequently used breast cancer cell lines. This will assist researchers in selecting the most appropriate cell lines to use for breast cancer studies and provide context for the interpretation of the emerging results.Electronic supplementary materialThe online version of this article (doi:10.1186/s13058-017-0855-0) contains supplementary material, which is available to authorized users.
In Saccharomyces cerevisiae, mechanisms modulating the mating steps following cell cycle arrest are not well characterized. However, the N-terminal domain of Ste2p, a G protein-coupled pheromone receptor, was recently proposed to mediate events at this level. Toward deciphering receptor mechanisms associated with this mating functionality, scanning mutagenesis of targeted regions of the N-terminal domain has been completed. Characterization of ste2 yeast overexpressing Ste2p variants indicated that residues Ile 24 and Ile 29 as well as Pro 15 are critical in mediating mating efficiency. This activity was shown to be independent of Ste2p mediated G1 arrest signaling. Further analysis of Ile 24 and Ile 29 highlight the residues' solvent accessibility, as well as the importance of the hydrophobic nature of the sites, and in the case of Ile 24 the specific size and shape of the side chain. Mutation of these Ile's led to arrest of mating after cell contact, but before completion of cell wall degradation. We speculate that these extracellular residues mediate novel receptor interactions with ligand or proteins, leading to stimulation of alternate signaling effector pathways.
Women with metastatic breast cancer have a disheartening 5-year survival rate of only 28%. CREB3L1 (cAMP-responsive element binding protein 3 like 1) is a metastasis suppressor that functions as a transcription factor, and in an estrogen-dependent model of rat breast cancer, it repressed the expression of genes that promote breast cancer progression and metastasis. In this report, we set out to determine the expression level of CREB3L1 across different human breast cancer subtypes and determine whether CREB3L1 functions as a metastasis suppressor, particularly in triple negative breast cancers (TNBCs). CREB3L1 expression was generally increased in luminal A, luminal B and HER2 breast cancers, but significantly reduced in a high proportion (75%) of TNBCs. Two luminal A (HCC1428, T47D) and two basal TNBC (HCC1806, HCC70) CREB3L1-deficient breast cancer cell lines were characterized as compared to their corresponding HA-CREB3L1-expressing counterparts. HA-CREB3L1 expression significantly reduced both cell migration and anchorage-independent growth in soft agar but had no impact on cell proliferation rates as compared to the CREB3L1-deficient parental cell lines. Restoration of CREB3L1 expression in HCC1806 cells was also sufficient to reduce mammary fat pad tumor formation and lung metastases in mouse xenograft models of breast cancer as compared to the parental HCC1806 cells. These results strongly support a metastasis suppressor role for CREB3L1 in human luminal A and TNBCs. Further, the ability to identify the subset of luminal A (7%) and TNBCs (75%) that are CREB3L1-deficient provides opportunities to stratify patients that would benefit from additional treatments to treat their more metastatic disease.
The lack of targeted therapies for triple-negative breast cancer (TNBC) contributes to their high mortality rates and high risk of relapse compared to other subtypes of breast cancer. Most TNBCs (75%) have downregulated the expression of CREB3L1 (cAMP-responsive element binding protein 3 like 1), a transcription factor and metastasis suppressor that represses genes that promote cancer progression and metastasis. In this report, we screened an FDA-approved drug library and identified four drugs that were highly cytotoxic towards HCC1806 CREB3L1-deficient TNBC cells. These four drugs were: (1) palbociclib isethionate, a CDK4/6 inhibitor, (2) lanatocide C (also named isolanid), a Na+/K+-ATPase inhibitor, (3) cladribine, a nucleoside analog, and (4) homoharringtonine (also named omacetaxine mepesuccinate), a protein translation inhibitor. Homoharringtonine consistently showed the most cytotoxicity towards an additional six TNBC cell lines (BT549, HCC1395, HCC38, Hs578T, MDA-MB-157, MDA-MB-436), and several luminal A breast cancer cell lines (HCC1428, MCF7, T47D, ZR-75-1). All four drugs were then separately evaluated for possible synergy with the chemotherapy agents, doxorubicin (an anthracycline) and paclitaxel (a microtubule stabilizing agent). A strong synergy was observed using the combination of homoharringtonine and paclitaxel, with high cytotoxicity towards TNBC cells at lower concentrations than when each was used separately.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.