▪ Abstract T helper lymphocytes can be divided into two distinct subsets of effector cells based on their functional capabilities and the profile of cytokines they produce. The Th1 subset of CD4+ T cells secretes cytokines usually associated with inflammation, such as IFN-γ and TNF and induces cell-mediated immune responses. The Th2 subset produces cytokines such as IL-4 and IL-5 that help B cells to proliferate and differentiate and is associated with humoral-type immune responses. The selective differentiation of either subset is established during priming and can be significantly influenced by a variety of factors. One of these factors, the cytokine environment, has been put forward as the major variable influencing Th development and is already well reviewed by others. Instead, in the current review, we focus on some of the alternative approaches for skewing Th1/Th2 responses. Specifically, we discuss the effects on Th priming of (a) using altered peptide ligands as antigens, (b) varying the dose of antigen, and (c) altering costimulatory signals. The potential importance of each of these variables to influence immune responses to pathogens in vivo is discussed throughout.
SummaryNaive CD4 + T cells can differentiate into cells predominantly involved in humoral immunity, known as T helper type 2 cells (Th2), or cells involved in cell-mediated immunity, known as Thl cells. In this report, we show that priming ofCD4 + T cells bearing a transgene-encoded T cell receptor can lead to differentiation into Thl-like cells producing abundant interferon ~/ when the cells are exposed to high antigen doses, while low doses of the same peptide induce cells with the same T cell receptor to differentiate into Th2-1ike cells producing abundant interleukin 4. Thus antigen dose is one factor that can control the differentiation fate of a naive CD4 + T cell.
Leukocyte recruitment to sites of infection or inflammation requires multiple adhesive events. While numerous players promoting leukocyte-endothelial interactions have been characterized, functionally important endogenous inhibitors of leukocyte adhesion have not been identified. Here, we describe the endothelial-derived secreted molecule, developmental endothelial locus-1 (Del-1), as an anti-adhesive factor that interferes with the integrin LFA-1-dependent leukocyte-endothelial adhesion. Endothelial Del-1-deficiency increased LFA-1-dependent leukocyte adhesion in vitro and in vivo. Del-1-/-mice displayed significantly higher neutrophil accumulation in LPS-induced lung inflammation in vivo, which was reversed in Del-1/LFA-1-double deficient mice. Thus, Del-1 is an endogenous inhibitor of inflammatory cell recruitment and could provide a basis for targeting leukocyte-endothelial interactions in disease.Leukocyte extravasation is integral to the response to infection or injury and to inflammation and autoimmunity. Leukocyte recruitment comprises a well coordinated cascade of adhesive events including selectin-mediated rolling, firm adhesion of leukocytes to endothelial cells and & This manuscript has been accepted for publication in Science. This version has not undergone final editing. Please refer to the complete version of record at http://www.sciencemag.org/. The manuscript may not be reproduced or used in any manner that does not fall within the fair use provisions of the Copyright Act without the prior, written permission of AAAS. †To whom correspondence should be addressed chavakist@mail.nih.gov. * EYC and EC contributed equally # MAC and HL contributed equally NIH Public Access NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscript their subsequent transendothelial migration. The interaction between LFA-1 (αLβ2, CD11a/ CD18) and endothelial ICAM-1 is crucial during firm endothelial adhesion of leukocytes (1-5). Whereas numerous adhesion receptors promoting inflammatory cell recruitment have been identified, very little information exists about endogenous inhibitors of the leukocyte adhesion cascade (1-7). Developmental endothelial locus-1 (Del-1) is a glycoprotein that is secreted by endothelial cells and can associate with the endothelial cell surface and the extracellular matrix (8-10). Del-1 is regulated upon hypoxia or vascular injury and has been implicated in vascular remodelling during angiogenesis (10-12). Here, we sought to determine whether endothelial-derived Del-1 participates in leukocyte-endothelial interactions. RT-PCR analysis revealed Del-1 mRNA predominantly in the brain and lung, with no expression in liver, spleen, or whole blood (Fig. 1A and fig. S1A). Del-1 was expressed in WT but not in Del-1-/-murine lung endothelial cells (Fig. 1B, 9). Immunohistochemistry of lung tissues demonstrated the presence of Del-1 in vessels, as observed by co-staining with the endothelial marker PECAM-1 ( fig. S1B).To determine whether Del-1 participates in leukocyte recruitmen...
Regulation by transforming growth factor (TGF)-β plays an important role in immune homeostasis. TGF-β inhibits T cell functions by blocking both proliferation and differentiation. Here we show that TGF-β blocks Th1 differentiation by inhibiting the expression of T-bet, the apparent masterregulator of T helper (Th)1 differentiation. Restoration of T-bet expression through retroviral transduction of T-bet into developing Th1 cells abrogated the inhibitory effect of TGF-β. In addition, we show that, contrary to prior suggestions, downregulation of interleukin 12 receptor β2 chain is not key to the TGF-β–mediated effect. Furthermore, we show that the direct inhibitory effect of TGF-β on T cells is responsible, at least in part, for the inability of BALB/c mice to mount a Leishmania-specific Th1 response and to clear Leishmanial infection.
SummaryCD147 is a widely expressed plasma membrane protein that has been implicated in a variety of physiological and pathological activities. It is best known for its ability to function as extracellular matrix metalloproteinase inducer (hence the other name for this protein, EMMPRIN), but has also been shown to regulate lymphocyte responsiveness, monocarboxylate transporter expression and spermatogenesis. These functions reflect multiple interacting partners of CD147. Among these CD147-interacting proteins cyclophilins represent a particularly interesting class, both in terms of structural considerations and potential medical implications. CD147 has been shown to function as a signalling receptor for extracellular cyclophilins A and B and to mediate chemotactic activity of cyclophilins towards a variety of immune cells. Recent studies using in vitro and in vivo models have demonstrated a role for cyclophilin-CD147 interactions in the regulation of inflammatory responses in a number of diseases, including acute lung inflammation, rheumatoid arthritis and cardiovascular disease. Agents targeting either CD147 or cyclophilin activity showed significant anti-inflammatory effects in experimental models, suggesting CD147-cyclophilin interactions may be a good target for new anti-inflammatory therapeutics. Here, we review the recent literature on different aspects of cyclophilin-CD147 interactions and their role in inflammatory diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.