Allergic asthma is an inflammatory lung disease initiated and directed by T helper cells type 2 (Th2). The mechanism involved in generation of Th2 responses to inert inhaled antigens, however, is unknown. Epidemiological evidence suggests that exposure to lipopolysaccharide (LPS) or other microbial products can influence the development and severity of asthma. However, the mechanism by which LPS influences asthma pathogenesis remains undefined. Although it is known that signaling through Toll-like receptors (TLR) is required for adaptive T helper cell type 1 (Th1) responses, it is unclear if TLRs are needed for Th2 priming. Here, we report that low level inhaled LPS signaling through TLR4 is necessary to induce Th2 responses to inhaled antigens in a mouse model of allergic sensitization. The mechanism by which LPS signaling results in Th2 sensitization involves the activation of antigen-containing dendritic cells. In contrast to low levels, inhalation of high levels of LPS with antigen results in Th1 responses. These studies suggest that the level of LPS exposure can determine the type of inflammatory response generated and provide a potential mechanistic explanation of epidemiological data on endotoxin exposure and asthma prevalence.
▪ Abstract T helper lymphocytes can be divided into two distinct subsets of effector cells based on their functional capabilities and the profile of cytokines they produce. The Th1 subset of CD4+ T cells secretes cytokines usually associated with inflammation, such as IFN-γ and TNF and induces cell-mediated immune responses. The Th2 subset produces cytokines such as IL-4 and IL-5 that help B cells to proliferate and differentiate and is associated with humoral-type immune responses. The selective differentiation of either subset is established during priming and can be significantly influenced by a variety of factors. One of these factors, the cytokine environment, has been put forward as the major variable influencing Th development and is already well reviewed by others. Instead, in the current review, we focus on some of the alternative approaches for skewing Th1/Th2 responses. Specifically, we discuss the effects on Th priming of (a) using altered peptide ligands as antigens, (b) varying the dose of antigen, and (c) altering costimulatory signals. The potential importance of each of these variables to influence immune responses to pathogens in vivo is discussed throughout.
Interleukin-5 (IL-5), which is produced by CD4؉ T helper 2 (Th2) cells, but not by Th1 cells, plays a key role in the development of eosinophilia in asthma. Despite increasing evidence that the outcome of many diseases is determined by the ratio of the two subsets of CD4 ؉ T helper cells, Th1 and Th2, the molecular basis for Th1-and Th2-specific gene expression remains to be elucidated. We previously established a critical role for the transcription factor GATA-3 in IL-5 promoter activation in EL-4 cells, which express both Th1-and Th2-type cytokines. Our studies reported here demonstrate that GATA-3 is critical for expression of the IL-5 gene in bona fide
SummaryNaive CD4 + T cells can differentiate into cells predominantly involved in humoral immunity, known as T helper type 2 cells (Th2), or cells involved in cell-mediated immunity, known as Thl cells. In this report, we show that priming ofCD4 + T cells bearing a transgene-encoded T cell receptor can lead to differentiation into Thl-like cells producing abundant interferon ~/ when the cells are exposed to high antigen doses, while low doses of the same peptide induce cells with the same T cell receptor to differentiate into Th2-1ike cells producing abundant interleukin 4. Thus antigen dose is one factor that can control the differentiation fate of a naive CD4 + T cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.