The purpose of this doctoral dissertation research project was to determine if exercise training or social enrichment could enhance stress resilience in rats. The specific aims of this experiment were to evaluate: (1) how combined sleep disturbance and predator stress affect biological and psychological components of the stress response; (2) if exercise training attenuates the biological and psychological components of the stress response and promotes recovery following exposure to sleep disturbance and predator stress; (3) if social support attenuates the biological and psychological components of the stress response and promotes recovery following exposure to sleep disturbance and predator stress; and (4) sex differences in the effects of sleep disturbance and predator stress on biological and psychological components of the stress response.The independent variables were: (1) exercise training (yes, no), (2) social enrichment (pair, individual housing), (3) sex (female, male), and (4) stress period (pre-stress, stress, post-stress). A combined sleep disturbance and predator stressor was administered over a 2 week period. The sleep disturbance stressor was administered daily during the animals' sleep period. The predator stress was administered intermittently during the animals' active period. This iv stressor was designed to be analogous to conditions that military personnel experience during combat deployments. Biological and psychological variables were measured before, during, and after the stress period. The biological dependent variables were corticosterone (fecal and serum) and body weight.
Cognitive control processes encompass many distinct components, including response inhibition (stopping a prepotent response), proactive control (using prior information to enact control), reactive control (last-minute changing of a prepotent response), and conflict monitoring (choosing between two competing responses). While frontal midline theta activity is theorized to be a general marker of the need for cognitive control, a stringent test of this hypothesis would require a quantitative, within-subject comparison of the neural activation patterns indexing many different cognitive control strategies, an experiment lacking in the current literature. We recorded EEG from 176 participants as they performed tasks that tested inhibitory control (Go/Nogo Task), proactive and reactive control (AX-Continuous Performance Task), and resolving response conflict (Global/Local Task-modified Flanker Task). As activity in the theta (4–8 Hz) frequency band is thought to be a common signature of cognitive control, we assessed frontal midline theta activation underlying each cognitive control strategy. In all strategies, we found higher frontal midline theta power for trials that required more cognitive control (target conditions) versus control conditions. Additionally, reactive control and inhibitory control had higher theta power than proactive control and response conflict, and proactive control had higher theta power than response conflict. Using decoding analyses, we were able to successfully decode control from target trials using classifiers trained exclusively on each of the other strategies, thus firmly demonstrating that theta representations of cognitive control generalize across multiple cognitive control strategies. Our results confirm that frontal midline theta-band activity is a common mechanism for initiating and executing cognitive control, but theta power also differentiates between cognitive control mechanisms. As theta activation reliably differs depending on the cognitive control strategy employed, future work will need to focus on the differential role of theta in differing cognitive control strategies.
Analysis of event-related potential (ERP) data includes several steps to ensure that ERPs meet an appropriate level of signal quality. One such step, subject exclusion, rejects subject data if ERP waveforms fail to meet an appropriate level of signal quality. Subject exclusion is an important quality control step in the ERP analysis pipeline as it ensures that statistical inference is based only upon those subjects exhibiting clear evoked brain responses. This critical quality control step is most often performed simply through visual inspection of subject-level ERPs by investigators. Such an approach is qualitative, subjective, and susceptible to investigator bias, as there are no standards as to what constitutes an ERP of sufficient signal quality. Here, we describe a standardized and objective method for quantifying waveform quality in individual subjects and establishing criteria for subject exclusion. The approach uses bootstrap resampling of ERP waveforms (from a pool of all available trials) to compute a signal-to-noise ratio confidence interval (SNR-CI) for individual subject waveforms. The lower bound of this SNR-CI (SNRLB) yields an effective and objective measure of signal quality as it ensures that ERP waveforms statistically exceed a desired signal-to-noise criterion. SNRLB provides a quantifiable metric of individual subject ERP quality and eliminates the need for subjective evaluation of waveform quality by the investigator. We detail the SNR-CI methodology, establish the efficacy of employing this approach with Monte Carlo simulations, and demonstrate its utility in practice when applied to ERP datasets.
Neuroimaging and patient work over the past decade have indicated that, following retinal deafferentation, the human visual cortex undergoes a large-scale and enduring reorganization of its topography such that the classical retinotopic organization of deafferented visual cortex remaps to represent non-classical regions of visual space. Such long-term visual reorganization is proposed to occur through changes in the functional balance of deafferented visual circuits that engage more lasting changes through activity-dependent neuroplasticity. Here, we investigated the short-term changes in functional balance (short-term plasticity; homeostatic plasticity) that occur within deafferented human visual cortices. We recorded electroencephalogram (EEG) while observers were conditioned for 6 s with a simulated retinal scotoma (artificial scotoma) positioned 8.0° in the periphery. Visual evoked potentials (VEPs) evoked by the onset of sinusoidal visual probes that varied in their tilt were used to examine changes in cortical excitability within and around cortical representations of the simulated scotoma. Psychophysical orientation functions obtained from discrimination of visual probe tilt were used to examine alterations in the stimulus selectivity within the scotoma representations. Consistent with a mechanism of homeostatic disinhibition, an early extrastriate component of the VEP (the early phase P1) exhibited increased amplitude following the condition with a simulated scotoma relative to a stimulus-matched control condition. This increased visual cortical response was associated with a reduction in the slope of the psychophysical orientation function, suggesting a broader tuning of neural populations within scotoma representations. Together, these findings support a mechanism of disinhibition in promoting visual plasticity and topographical reorganization.
Neural mechanisms of selective attention must be capable of adapting to variation in the absolute size of an attended stimulus in the ever-changing visual environment. To date, little is known regarding how attentional selection interacts with fluctuations in the spatial expanse of an attended object. Here, we use event-related potentials (ERPs) to investigate the scaling of attentional enhancement and suppression across the visual field. We measured ERPs while participants performed a task at fixation that varied in its attentional demands (attentional load) and visual angle (1.0° or 2.5°). Observers were presented with a stream of task-relevant stimuli while foveal, parafoveal, and peripheral visual locations were probed by irrelevant distractor stimuli. We found two important effects in the N1 component of visual ERPs. First, N1 modulations to task-relevant stimuli indexed attentional selection of stimuli during the load task and further correlated with task performance. Second, with increased task size, attentional modulation of the N1 to distractor stimuli showed a differential pattern that was consistent with a scaling of attentional selection. Together, these results demonstrate that the size of an attended stimulus scales the profile of attentional selection across the visual field and provides insights into the attentional mechanisms associated with such spatial scaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.