Plants can change soil biology, chemistry and structure in ways that alter subsequent plant growth. This process, referred to as plant-soil feedback (PSF), has been suggested to provide mechanisms for plant diversity, succession and invasion. Here we use three meta-analytical models: a mixed model and two Bayes models, one correcting for sampling dependence and one correcting for sampling and hierarchical dependence (delta-splitting model) to test these hypotheses. All three models showed that PSFs have medium to large negative effects on plant growth, and especially grass growth, the life form for which we had the most data. This supports the hypothesis that PSFs, through negative frequency dependence, maintain plant diversity, especially in grasslands. PSFs were also large and negative for annuals and natives, but the delta-splitting model indicated that more studies are needed for these results to be conclusive. Our results support the hypotheses that PSFs encourage successional replacements and plant invasions. Most studies were performed using monocultures of grassland species in greenhouse conditions. Future research should examine PSFs in plant communities, non-grassland systems and field conditions.
Timely dissemination of scientific findings depends not only on rapid publication of submitted manuscripts, a topic which has received much discussion, but also on rapid submission of research after the research is completed. We measured submission delay (time from the last date of data collection to the submission of a manuscript) for every paper from 14 journals in 2007 and compared these submission delays among four fields of biology (conservation, taxonomy, behavior, and evolution). Manuscripts published in leading journals in the field of conservation biology have the longest delays in publication of accepted manuscripts and the longest intervals between completion of research and submission of the manuscript. Delay in manuscript submission accounts for more than half of the total time from last date of data collection to publication. Across fields, the number of authors was significantly negatively correlated with submission delay, but conservation journals had the second highest number of authors and the greatest submission delay, so submission of conservation manuscripts was not hindered by a shortage of collaboration relative to other fields. Rejection rates were greater in conservation journals than in behavior and evolution, but rejection times were faster; thus, there were no obvious net differences among fields in the time papers spent waiting to be rejected. Publication delay has been reduced significantly in the last 7 years, but was still greater in conservation journals than in any of the other three fields we studied. Thus, the urgent field of conservation biology is hindered in both preparation and publication of manuscripts.
Increased edge effects in fragmented habitats can affect the abundance of edge-dwelling organisms, but these impacts may depend on the biological attributes of species. Microhabitat choice, a species characteristic that reflects combinations of biological traits, may affect the ability of peripheral species to take advantage of increased edge habitat in the presence of edge effects. In this field study, we built artificial shrub modules designed to encourage web spiders to build webs on the periphery. While modules were identical in volume, they differed in shape (cubic and elongated), so that elongated modules had more edge habitat and were subject to enhanced edge effects. Given that the tangle-web spiders Theridion and Dictyna built webs on module edges and strongly differed in terms of concealment and substrate generalization, two habitat characteristics associated with lower vulnerability to habitat modification, we tested the hypothesis that Theridion, which built webs in more concealed locations and on a greater diversity of substrate configurations in the modules compared to Dictyna, would take better advantage of increased edge habitat. As predicted, Theridion was significantly more abundant on elongated modules whereas the abundance of Dictyna did not respond to shape, even though the change in module shape entailed a similar increase in favored substrate for both spider groups. Our results suggest that the microhabitat associations of organisms may be linked to their propensity to be sensitive to edges, and that a better understanding of these links can improve our ability to predict the effects of habitat modification on biodiversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.