Natural language generators for taskoriented dialogue must effectively realize system dialogue actions and their associated semantics. In many applications, it is also desirable for generators to control the style of an utterance. To date, work on task-oriented neural generation has primarily focused on semantic fidelity rather than achieving stylistic goals, while work on style has been done in contexts where it is difficult to measure content preservation. Here we present three different sequence-to-sequence models and carefully test how well they disentangle content and style. We use a statistical generator, PERSONAGE, to synthesize a new corpus of over 88,000 restaurant domain utterances whose style varies according to models of personality, giving us total control over both the semantic content and the stylistic variation in the training data. We then vary the amount of explicit stylistic supervision given to the three models. We show that our most explicit model can simultaneously achieve high fidelity to both semantic and stylistic goals: this model adds a context vector of 36 stylistic parameters as input to the hidden state of the encoder at each time step, showing the benefits of explicit stylistic supervision, even when the amount of training data is large.
Americans spend about a third of their time online, with many participating in online conversations on social and political issues. We hypothesize that social media arguments on such issues may be more engaging and persuasive than traditional media summaries, and that particular types of people may be more or less convinced by particular styles of argument, e.g. emotional arguments may resonate with some personalities while factual arguments resonate with others. We report a set of experiments testing at large scale how audience variables interact with argument style to affect the persuasiveness of an argument, an under-researched topic within natural language processing. We show that belief change is affected by personality factors, with conscientious, open and agreeable people being more convinced by emotional arguments.
In order to tell stories in different voices for different audiences, interactive story systems require: (1) a semantic representation of story structure, and (2) the ability to automatically generate story and dialogue from this semantic representation using some form of Natural Language Generation (nlg). However, there has been limited research on methods for linking story structures to narrative descriptions of scenes and story events. In this paper we present an automatic method for converting from Scheherazade's story intention graph, a semantic representation, to the input required by the personage nlg engine. Using 36 Aesop Fables distributed in DramaBank, a collection of story encodings, we train translation rules on one story and then test these rules by generating text for the remaining 35. The results are measured in terms of the string similarity metrics Levenshtein Distance and BLEU score. The results show that we can generate the 35 stories with correct content: the test set stories on average are close to the output of the Scheherazade realizer, which was customized to this semantic representation. We provide some examples of story variations generated by personage. In future work, we will experiment with measuring the quality of the same stories generated in different voices, and with techniques for making storytelling interactive.
We detail refinements made to Abstract Meaning Representation (AMR) that make the representation more suitable for supporting a situated dialogue system, where a human remotely controls a robot for purposes of search and rescue and reconnaissance. We propose 36 augmented AMRs that capture speech acts, tense and aspect, and spatial information. This linguistic information is vital for representing important distinctions, for example whether the robot has moved, is moving, or will move. We evaluate two existing AMR parsers for their performance on dialogue data. We also outline a model for graph-to-graph conversion, in which output from AMR parsers is converted into our refined AMRs. The design scheme presented here, though task-specific, is extendable for broad coverage of speech acts using AMR in future task-independent work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.