S U M M A R YCurrently, the emergence of a novel human coronavirus, SARS-CoV-2, has become a global health concern causing severe respiratory tract infections in humans. Human-to-human transmissions have been described with incubation times between 2-10 days, facilitating its spread via droplets, contaminated hands or surfaces. We therefore reviewed the literature on all available information about the persistence of human and veterinary coronaviruses on inanimate surfaces as well as inactivation strategies with biocidal agents used for chemical disinfection, e.g. in healthcare facilities. The analysis of 22 studies reveals that human coronaviruses such as Severe Acute Respiratory Syndrome (SARS) coronavirus, Middle East Respiratory Syndrome (MERS) coronavirus or endemic human coronaviruses (HCoV) can persist on inanimate surfaces like metal, glass or plastic for up to 9 days, but can be efficiently inactivated by surface disinfection procedures with 62e71% ethanol, 0.5% hydrogen peroxide or 0.1% sodium hypochlorite within 1 minute. Other biocidal agents such as 0.05e0.2% benzalkonium chloride or 0.02% chlorhexidine digluconate are less effective. As no specific therapies are available for SARS-CoV-2, early containment and prevention of further spread will be crucial to stop the ongoing outbreak and to control this novel infectious thread.
S evere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the third highly pathogenic human coronavirus to cross the species barrier into the human population during the past 20 years (1-3). SARS-CoV-2 infection is associated with coronavirus disease (COVID-19), which is characterized by severe respiratory distress, fever, and cough and high rates of mortality, especially in older persons and those with underlying health conditions (3). The World Health Organization (WHO) declared SARS-CoV-2 a pandemic on March 11, 2020 (4), and by April 8, a total of 1,447,466 confirmed cases and 83,471 deaths from SARS-CoV-2 had been reported worldwide (5). Human-to-human transmission of SARS-CoV-2 is efficient, and infected persons can transmit the virus even when they have no, or only mild, symptoms (3). Because no antiviral drugs or vaccines are available, virus containment and prevention of infection are the current highest priorities. To limit virus spread, effective hand hygiene is crucial. Therefore, easily available but efficient disinfectants are needed. WHO's guidelines for hand hygiene in healthcare suggest 2 alcohol-based formulations for hand sanitization to reduce the infectivity and spread of pathogens (6). WHO's recommendations are based on fastacting, broad-spectrum microbicidal activity, along with accessibility and safety. The original WHO formulations failed to meet the efficacy requirements of European Norm 1500 in previous tests (7). However, Suchomel et al. (8) suggested modified versions with increased concentrations of ethanol: 80% (wt/ wt) (85.5% [vol/vol]; formulation I), or isopropanol, 75% (wt/wt) (81.3% [vol/vol]; formulations II). Later, they complemented these by reducing the glycerol concentrations (9). We previously showed that these modified WHO formulations were able to inactivate severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV; 10), which are related to SARS-CoV-2. Current recommendations to inactivate SARS-CoV-2 were translated from findings of other coronaviruses (11). To evaluate whether these alcohol-based disinfectants also effectively inactivate SARS-CoV-2, we tested different concentrations of the original and modified WHO formulations I and II (6,9), ethanol, and 2-propanol for virucidal activity.
The ongoing SARS-CoV-2 pandemic creates a significant threat to global health. Recent studies suggested the significance of throat and salivary glands as major sites of virus replication and transmission during early COVID-19 thus advocating application of oral antiseptics. However, the antiviral efficacy of oral rinsing solutions against SARS-CoV-2 has not been examined. Here, we evaluated the virucidal activity of different available oral rinses against SARS-CoV-2 under conditions mimicking nasopharyngeal secretions. Several formulations with significant SARS-CoV-2 inactivating properties in vitro support the idea that oral rinsing might reduce the viral load of saliva and could thus lower the transmission of SARS-CoV-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.