(D)-Glucosamine and other nutritional supplements have emerged as safe alternative therapies for osteoarthritis (OA), a chronic and degenerative articular joint disease. In our preceding paper, a series of novel O-6 phosphate N-acetyl (d)-glucosamine prodrugs aimed at improving the oral bioavailability of N-acetyl-(d)-glucosamine as its putative bioactive phosphate form were shown to have greater chondroprotective activity in vitro when compared to the parent agent. In order to extend the SAR studies, this work focuses on the O-3 and O-4 phosphate prodrugs of N-acetyl-(d)-glucosamine bearing a 4-methoxy phenyl group and different amino acid esters on the phosphate moiety. Among the compounds, the (l)-proline amino acid-containing prodrugs proved to be the most active of the series, more effective than the prior O-6 compounds, and well processed in chondrocytes in vitro. Data on human cartilage support the notion that these novel O-3 and O-4 regioisomers may represent novel promising leads for drug discovery for osteoarthritis.
Superoxide reductase (SOR), a non-heme mononuclear iron protein that is involved in superoxide detoxification in microorganisms, can be used as an unprecedented model to study the mechanisms of O2 activation and of the formation of high-valent iron-oxo species in metalloenzymes. By using resonance Raman spectroscopy, it was shown that the mutation of two residues in the second coordination sphere of the SOR iron active site, K48 and I118, led to the formation of a high-valent iron-oxo species when the mutant proteins were reacted with H2O2. These data demonstrate that these residues in the second coordination sphere tightly control the evolution and the cleavage of the O-O bond of the ferric iron hydroperoxide intermediate that is formed in the SOR active site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.