Expression of hTERT is the major limiting factor for telomerase activity. We previously showed that methylation of the hTERT promoter is necessary for its transcription and that CTCF can repress hTERT transcription by binding to the first exon. In this study, we used electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) to show that CTCF does not bind the methylated first exon of hTERT. Treatment of telomerase-positive cells with 5-azadC led to a strong demethylation of hTERT 5′-regulatory region, reactivation of CTCF binding and downregulation of hTERT. Although complete hTERT promoter methylation was associated with full transcriptional repression, detailed mapping showed that, in telomerase-positive cells, not all the CpG sites were methylated, especially in the promoter region. Using a methylation cassette assay, selective demethylation of 110 bp within the core promoter significantly increased hTERT transcriptional activity. This study underlines the dual role of DNA methylation in hTERT transcriptional regulation. In our model, hTERT methylation prevents binding of the CTCF repressor, but partial hypomethylation of the core promoter is necessary for hTERT expression.
The expression of the catalytic subunit (hTERT) represents the limiting factor for telomerase activity. Previously, we detected a transcriptional repressor effect of the proximal exonic region (first two exons) of the hTERT gene. To better understand the mechanism involved and to identify a potential repressor, we further characterized this region. The addition of the hTERT proximal exonic region downstream of the hTERT minimal promoter strongly reduced promoter transcriptional activity in all cells tested (tumor, normal and immortalized). This exonic region also significantly inhibited the transcriptional activity of the CMV and CDKN2A promoters, regardless of the cell type. Therefore, the repressor effect of hTERT exonic region is neither cell nor promoter-dependent. However, the distance between the promoter and the exonic region can modulate this repressor effect, suggesting that nucleosome positioning plays a role in transcriptional repression. We showed by electrophoretic mobility shift assay that CCCTC-binding factor (CTCF) binds to the proximal exonic region of hTERT. Chromatin immunoprecipitaion assays confirmed the binding of CTCF to this region. CTCF is bound to hTERT in cells in which hTERT is not expressed, but not in telomerase-positive ones. Moreover, the transcriptional downregulation of CTCF by RNA interference derepressed hTERT gene expression in normal telomerase-negative cells. Our results suggest that CTCF participates in key cellular mechanisms underlying immortality by regulating hTERT gene expression.
Hepatocellular carcinomas (HCCs) exhibit a diversity of molecular phenotypes, raising major challenges in clinical management. HCCs detected by surveillance programs at an early stage are candidates for potentially curative therapies (local ablation, resection, or transplantation). In the long term, transplantation provides the lowest recurrence rates. Treatment allocation is based on tumor number, size, vascular invasion, performance status, functional liver reserve, and the prediction of early (<2 years) recurrence, which reflects the intrinsic aggressiveness of the tumor. Well‐differentiated, potentially low‐aggressiveness tumors form the heterogeneous molecular class of nonproliferative HCCs, characterized by an approximate 50% β‐catenin mutation rate. To define the clinical, pathological, and molecular features and the outcome of nonproliferative HCCs, we constructed a 1,133‐HCC transcriptomic metadata set and validated findings in a publically available 210‐HCC RNA sequencing set. We show that nonproliferative HCCs preserve the zonation program that distributes metabolic functions along the portocentral axis in normal liver. More precisely, we identified two well‐differentiated, nonproliferation subclasses, namely periportal‐type (wild‐type β‐catenin) and perivenous‐type (mutant β‐catenin), which expressed negatively correlated gene networks. The new periportal‐type subclass represented 29% of all HCCs; expressed a hepatocyte nuclear factor 4A–driven gene network, which was down‐regulated in mouse hepatocyte nuclear factor 4A knockout mice; were early‐stage tumors by Barcelona Clinic Liver Cancer, Cancer of the Liver Italian Program, and tumor–node–metastasis staging systems; had no macrovascular invasion; and showed the lowest metastasis‐specific gene expression levels and TP53 mutation rates. Also, we identified an eight‐gene periportal‐type HCC signature, which was independently associated with the highest 2‐year recurrence‐free survival by multivariate analyses in two independent cohorts of 247 and 210 patients. Conclusion: Well‐differentiated HCCs display mutually exclusive periportal or perivenous zonation programs. Among all HCCs, periportal‐type tumors have the lowest intrinsic potential for early recurrence after curative resection. (Hepatology 2017;66:1502–1518).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.