Aeromonas salmonicida subsp. salmonicida is a Gram-negative bacterium causing furunculosis, an opportunistic infection of farmed salmonid fish. Current treatment methods against furunculosis rely heavily on antibiotherapy. However, strains of this opportunistic fish pathogen were found to possess genes that confer resistance to major antibiotics including those used to cure furunculosis. Therefore, dispensing bacterial symbionts as probiotics to susceptible hosts appears to be a promising alternative. Here, we present the genomic characterization and in vivo safety assessment of two brook charr (Salvelinus fontinalis) bacterial symbionts that inhibited A. salmonicida subsp. salmonicida growth in vitro (Pseudomonas fluorescens ML11A and Aeromonas sobria TM18) as well as a commercialized probiotic, Pediococcus acidilactici MA18/5M (Bactocell®). The genomic sequences of ML11A and TM18 obtained by whole-genome shotgun sequencing lack key virulence factor genes found in related pathogenic strains. Their genomic sequences are also devoid of genes involved in the inactivation (or target modification of) several key antimicrobial compounds used in salmonid aquaculture. Finally, when administered daily to live brook charr fingerlings, ML11A, TM18 and Bactocell® helped improve several physiological condition metrics such as mean body weight, Fulton’s condition factor and blood plasma lysozyme activity (an indicator for innate immune activity).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.