It is easy for today's students and researchers to believe that modern bioinformatics emerged recently to assist next-generation sequencing data analysis. However, the very beginnings of bioinformatics occurred more than 50 years ago, when desktop computers were still a hypothesis and DNA could not yet be sequenced. The foundations of bioinformatics were laid in the early 1960s with the application of computational methods to protein sequence analysis (notably, de novo sequence assembly, biological sequence databases and substitution models). Later on, DNA analysis also emerged due to parallel advances in (i) molecular biology methods, which allowed easier manipulation of DNA, as well as its sequencing, and (ii) computer science, which saw the rise of increasingly miniaturized and more powerful computers, as well as novel software better suited to handle bioinformatics tasks. In the 1990s through the 2000s, major improvements in sequencing technology, along with reduced costs, gave rise to an exponential increase of data. The arrival of 'Big Data' has laid out new challenges in terms of data mining and management, calling for more expertise from computer science into the field. Coupled with an ever-increasing amount of bioinformatics tools, biological Big Data had (and continues to have) profound implications on the predictive power and reproducibility of bioinformatics results. To overcome this issue, universities are now fully integrating this discipline into the curriculum of biology students. Recent subdisciplines such as synthetic biology, systems biology and whole-cell modeling have emerged from the ever-increasing complementarity between computer science and biology.
No abstract
Proteins of up to 230 kilodaltons are taken up by chinese hamster ovary fibroblasts exposed to electroporation under conditions generally similar to those used to mediate DNA transfection. The uptake of catalase, ovalbumin, and histone H1 labelled with fluorescein was visualized by fluorescence microscopy. Under the same conditions, the uptake of colloidal gold particles (20 nm diameter) was visualized by electron microscopy. In optimum conditions, about 25% of the cells remained viable and grew normally and about 25% of these retained labelled proteins during two cycles of further growth. About 6 x 10(4) molecules of catalase were retained per cell. Proteins were taken up when presented to the cells up to 4 h after electroporation, suggesting that mechanisms other than classical electropore formation may operate in these conditions. The proteins were localized in the cytoplasm in a predominantly vesicular pattern and histone H1 entered the nucleus in some cells.
Driven in part by its metabolic versatility, high intrinsic antibiotic resistance, and a large repertoire of virulence factors, Pseudomonas aeruginosa is expertly adapted to thrive in a wide variety of environments, and in the process, making it a notorious opportunistic pathogen. Apart from the extensively studied chronic infection in the lungs of people with cystic fibrosis (CF), P. aeruginosa also causes multiple serious infections encompassing essentially all organs of the human body, among others, lung infection in patients with chronic obstructive pulmonary disease, primary ciliary dyskinesia and ventilator-associated pneumonia; bacteremia and sepsis; soft tissue infection in burns, open wounds and postsurgery patients; urinary tract infection; diabetic foot ulcers; chronic suppurative otitis media and otitis externa; and keratitis associated with extended contact lens use. Although well characterized in the context of CF, pathogenic processes mediated by various P. aeruginosa virulence factors in other organ systems remain poorly understood. In this review, we use an organ system-based approach to provide a synopsis of disease mechanisms exerted by P. aeruginosa virulence determinants that contribute to its success as a versatile pathogen.
Methanol-toluene extracts of 17 common Antarctic marine sponges collected from shallow waters in McMurdo Sound in October-December 1989 were tested for suppression of growth of bacteria (gram-positive and negative), yeasts and fungi. Weak to moderate levels of antimicrobial activity occurred in all sponges. Antimicrobial activity was more common when gram-negative bacteria were exposed to sponge extracts; 47% of the sponge extracts caused growthinhibition inone or more gram-positive bacteria, while 100% of the extracts caused growth inhibition in gram-negative bacteria. Particularly strong activity was observed against two species of gram-positive bacteria exposed to extracts of the sponge Latrunculia apicalis and against one strain of gram-negative bacterium exposed to extracts of the sponge Haliclona sp. Antimicrobial responses against yeasts and fungi were generally non-existent or weak, with the exception of the yeast Candida tropicalis, which was strongly inhibited by extracts of the sponges Homaxonella bayourensis, Dendrilla membranosa, Kirkpatrickia variolosa, Gellius benedeni, Cinachyra antarctica and Scolymastia joubinia. Antimicrobial activity in these polar sponges is widespread but generally weaker than that found in temperate and tropical sponges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.