Driven in part by its metabolic versatility, high intrinsic antibiotic resistance, and a large repertoire of virulence factors, Pseudomonas aeruginosa is expertly adapted to thrive in a wide variety of environments, and in the process, making it a notorious opportunistic pathogen. Apart from the extensively studied chronic infection in the lungs of people with cystic fibrosis (CF), P. aeruginosa also causes multiple serious infections encompassing essentially all organs of the human body, among others, lung infection in patients with chronic obstructive pulmonary disease, primary ciliary dyskinesia and ventilator-associated pneumonia; bacteremia and sepsis; soft tissue infection in burns, open wounds and postsurgery patients; urinary tract infection; diabetic foot ulcers; chronic suppurative otitis media and otitis externa; and keratitis associated with extended contact lens use. Although well characterized in the context of CF, pathogenic processes mediated by various P. aeruginosa virulence factors in other organ systems remain poorly understood. In this review, we use an organ system-based approach to provide a synopsis of disease mechanisms exerted by P. aeruginosa virulence determinants that contribute to its success as a versatile pathogen.
Pseudomonas aeruginosa is a motile bacterium able to exhibit a social surface behaviour known as swarming motility. Swarming requires the polar flagellum of P. aeruginosa as well as the secretion of wetting agents to ease the spread across the surface. However, our knowledge on swarming is limited to observed phenotypes on agar-solidified media. To study the surface behaviour and the impact of wetting agents of P. aeruginosa on other surfaces, we assessed surface motility capabilities of the prototypical strain PA14 on semi-solid media solidified with alternative gelling agents, gellan gum and carrageenan. We found that, on these alternative surfaces, the characteristic dendritic spreading pattern of P. aeruginosa is drastically altered. One striking feature is the loss of dependence on rhamnolipids to spread effectively on plates solidified with these alternative gelling agents. Indeed, a rhlA-null mutant unable to produce its wetting agents still spreads effectively, albeit in a circular shape on both the gellan gum- and carrageenan-based media. Our data indicate that rhamnolipids do not have such a crucial role in achieving surface colonization of non-agar plates, suggesting a strong dependence on the physical properties of the tested surface. The use of alternative gelling agent provides new means to reveal unknown features of bacterial surface behaviour.
Pseudomonas aeruginosa and Burkholderia cenocepacia are important opportunistic pathogens often found together in the airways of persons with cystic fibrosis. Laboratory cocultures of both species often ends with one taking over the other.
Interactions between different bacterial species shape bacterial communities and their environments. The opportunistic pathogens Pseudomonas aeruginosa and Burkholderia cenocepacia both can colonize the lungs of individuals affected by cystic fibrosis. Using the social surface behavior called swarming motility as a study model of interactions, we noticed intricate interactions between B. cenocepacia K56-2 and P. aeruginosa PA14. While strain K56-2 does not swarm under P. aeruginosa favorable swarming conditions, co-inoculation with a non-motile PA14 flagellum-less ΔfliC mutant restored spreading for both strains. We show that P. aeruginosa provides the wetting agent rhamnolipids allowing K56-2 to perform swarming motility, while aflagellated PA14 seems able to «hitchhike» along with K56-2 cells in the swarming colony.ImportancePseudomonas aeruginosa and Burkholderia cenocepacia are important opportunistic pathogens often found together in the airways of persons with cystic fibrosis. Laboratory co-culture of both species often ends with one taking over the other. We used a surface motility assay to study the social interactions between population of these bacterial species. Under our conditions, B. cenocepacia cannot swarm without supplementation of the wetting agent produced by P. aeruginosa. In a mixed colony of both species, an aflagellated mutant of P. aeruginosa provides the necessary wetting agent to B. cenocepacia, allowing both bacteria to swarm and colonize a surface. We highlight this peculiar interaction where both bacteria set aside their antagonistic tendencies to cooperate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.