Influenza A(H1N1)pdm09 viruses cause sporadically very severe disease including fatal clinical outcomes associated with pneumonia, viremia and myocarditis. A mutation characterized by the substitution of aspartic acid (wild-type) to glycine at position 222 within the haemagglutinin gene (HA-D222G) was recorded during the 2009 H1N1 pandemic in Germany and other countries with significant frequency in fatal and severe cases. Additionally, A(H1N1)pdm09 viruses exhibiting the polymorphism HA-222D/G/N were detected both in the respiratory tract and in blood. Specimens from mild, fatal and severe cases were collected to study the heterogeneity of HA-222 in A(H1N1)pdm09 viruses circulating in Germany between 2009 and 2011. In order to enable rapid and large scale analysis we designed a pyrosequencing (PSQ) assay. In 2009/2010, the 222D wild-type of A(H1N1)pdm09 viruses predominated in fatal and severe outcomes. Moreover, co-circulating virus mutants exhibiting a D222G or D222E substitution (8/6%) as well as HA-222 quasispecies were identified (10%). Both the 222D/G and the 222D/G/N/V/Y polymorphisms were confirmed by TA cloning. PSQ analyses of viruses associated with mild outcomes revealed mainly the wild-type 222D and no D222G change in both seasons. However, an increase of variants with 222D/G polymorphism (60%) was characteristic for A(H1N1)pdm09 viruses causing fatal and severe cases in the season 2010/2011. Pure 222G viruses were not observed. Our results support the hypothesis that the D222G change may result from adaptation of viral receptor specificity to the lower respiratory tract. This could explain why transmission of the 222G variant is less frequent among humans. Thus, amino acid changes at HA position 222 may be the result of viral intra-host evolution leading to the generation of variants with an altered viral tropism.
BackgroundInfluenza infections induce considerable disease burden in young children. Biomarkers for the monitoring of disease activity at the point-of-care (POC) are currently lacking. Recent methodologies for fluorescence-based rapid testing have been developed to provide improved sensitivities with the initial diagnosis. The present study aims to explore the utility of second-generation rapid testing during longitudinal follow-up of influenza patients (Rapid Influenza Follow-up Testing = RIFT). Signal/control fluorescent readouts (Quantitative Influenza Follow-up Testing = QIFT) are evaluated as a potential biomarker for the monitoring of disease activity at the POC.Methods and FindingsRIFT (SOFIA) and QIFT were performed at the POC and compared to blinded RT-PCR at the National Reference Centre for Influenza. From 10/2011-4/2013, a total of 2048 paediatric cases were studied prospectively; 273 cases were PCR-confirmed for influenza. During follow-up, RIFT results turned negative either prior to PCR (68%), or simultaneously (30%). The first negative RIFT occurred after a median of 8 days with a median virus load (VL) of 5.6×10∧3 copies/ml and cycle threshold of 37, with no evidence of viral rebound. Binning analysis revealed that QIFT differentiated accurately between patients with low, medium and high viral titres. QIFT increase/decrease showed 88% agreement (sensitivity = 52%, specificity = 95%) with VL increase/decrease, respectively. QIFT-based viral clearance estimates showed similar values compared to PCR-based estimates. Variations in viral clearance rates were lower in treated compared to untreated patients. The study was limited by use of non-invasive, semi-quantitative nasopharyngeal samples. VL measurements below the limit of detection could not be quantified reliably.ConclusionsDuring follow-up, RIFT provides a first surrogate measure for influenza disease activity. A “switch” from positive to negative values may indicate a drop in viral load below a critical threshold, where rebound is no longer expected. QIFT may provide a useful tool for the monitoring of disease burden and viral clearance at the POC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.