Summary1. Nonlinear, parametric curve-fitting provides a framework for understanding diverse ecological and evolutionary trends (e.g. growth patterns and seasonal cycles). Currently, parametric curve-fitting requires a priori assumptions of curve trajectories, restricting their use for exploratory analyses. Furthermore, use of analytical techniques [nonlinear least-squares (NLS) and nonlinear mixedeffects models] for complex parametric curves requires efficient choice of starting parameters. 2. We illustrate the new R package FlexParamCurve that automates curve selection and provides tools to analyse nonmonotonic curve data in NLS and nonlinear mixed-effects models. Examples include empirical and simulated data sets for the growth of seabird chicks. 3. By automating curve selection and parameterization during curve-fitting, FlexParamCurve extends current possibilities for parametric analysis in ecological and evolutionary studies.
Ecogeographical rules provide potential to describe how organisms are morphologically constrained to climatic conditions. Allen's rule (relatively shorter appendages in colder environments) remains largely unsupported and there remains much controversy whether reduced surface area of appendages provides energetic savings sufficient to make this morphological trend truly adaptive.By showing for the first time that Allen's rule holds for closely related endothermic species, we provide persuasive support of the adaptive significance of this trend for multiple species. Our results indicate that reduction of thermoregulatory cost during the coldest part of the breeding season is the most likely mechanism driving Allen's rule for these species. Because for 54% of seabird species examined, rise in seasonal maximum temperature over 100 years will exceed that for minimum temperatures, an evolutionary mismatch will arise between selection for limb length reduction and ability to accommodate heat stress.
Birds such as great skuas Catharacta skua adapted for successful breeding at high latitudes may experience problems of heat dissipation in mild climates. Great skuas spend time bathing at freshwater sites close to breeding territories and here, we examine impacts of heat stress on bathing, foraging and nest attendance of adults during three breeding seasons with marked variation in the availability of prey (1-group sandeels Ammodytes marinus). Adults exhibited diurnal variation in bathing activity that matched heat-stress conditions. Moreover more birds bathed on days of higher average heat stress, suggesting that bathing plays a role in thermoregulation. Bathing numbers were lower in years of poor food availability, when adult attendance at territories was low, probably because lower attendance reduced the opportunity for parents to bathe without leaving chicks unattended. Chicks are normally guarded by female parents and fed by males but under conditions of low food availability territorial attendance of breeding pairs was particularly low on days of high heat stress, with chicks regularly left unattended at air temperatures exceeding 148C. Unattended chicks are at risk of being killed by neighbouring conspecifics and survival of chicks to fledging was low in the two years of low sandeel stocks. Our study indicates that for great skuas, indirect effects of climate change on prey stocks and direct effects on heat stress experienced by adults may be additive.
There is now abundant evidence that contemporary climatic change has indirectly affected a wide-range of species by changing trophic interactions, competition, epidemiology and habitat. However, direct physiological impacts of changing climates are rarely reported for endothermic species, despite being commonly reported for ectotherms. We review the evidence for changing physiological constraints on endothermic vertebrates at high temperatures, integrating theoretical and empirical perspectives on the morphology, physiology and behavior of marine birds. Potential for increasing heat stress exposure depends on changes in multiple environmental variables, not just air temperature, as well as organism-specific morphology, physiology and behavior. Endotherms breeding at high latitudes are vulnerable to the forecast, extensive temperature changes because of the adaptations they possess to minimize heat loss. Low-latitude species will also be challenged as they currently live close to their thermal limits and will likely suffer future water shortages. Small, highly-active species, particularly aerial foragers, are acutely vulnerable as they are least able to dissipate heat at high temperatures. Overall, direct physiological impacts of climatic change appear underrepresented in the published literature, but available data suggest they have much potential to shape behavior, morphology and distribution of endothermic species. Coincidence between future heat stress events and other energetic constraints on endotherms remains largely unexplored but will be key in determining the physiological impacts of climatic change. Multi-scale, biophysical modeling, informed by experiments that quantify thermoregulatory responses of endotherms to heat stress, is an essential precursor to urgently-needed analyses at the population or species level.
Delivering access to sufficient food, energy and water resources to ensure human wellbeing is a major concern for governments worldwide. However, it is crucial to account for the ‘nexus’ of interactions between these natural resources and the consequent implications for human wellbeing. The private sector has a critical role in driving positive change towards more sustainable nexus management and could reap considerable benefits from collaboration with researchers to devise solutions to some of the foremost sustainability challenges of today. Yet opportunities are missed because the private sector is rarely involved in the formulation of deliverable research priorities. We convened senior research scientists and influential business leaders to collaboratively identify the top forty questions that, if answered, would best help companies understand and manage their food-energy-water-environment nexus dependencies and impacts. Codification of the top order nexus themes highlighted research priorities around development of pragmatic yet credible tools that allow businesses to incorporate nexus interactions into their decision-making; demonstration of the business case for more sustainable nexus management; identification of the most effective levers for behaviour change; and understanding incentives or circumstances that allow individuals and businesses to take a leadership stance. Greater investment in the complex but productive relations between the private sector and research community will create deeper and more meaningful collaboration and cooperation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.