An association between reduced susceptibility to echinocandins and changes in the 1,3--D-glucan synthase (GS) subunit Fks1p was investigated. Specific mutations in fks1 genes from Saccharomyces cerevisiae and Candida albicans mutants are described that are necessary and sufficient for reduced susceptibility to the echinocandin drug caspofungin. One group of amino acid changes in ScFks1p, ScFks2p, and CaFks1p defines a conserved region (Phe 641 to Asp 648 of CaFks1p) in the Fks1 family of proteins. The relationship between several of these fks1 mutations and the phenotype of reduced caspofungin susceptibility was confirmed using site-directed mutagenesis or integrative transformation. Glucan synthase activity from these mutants was less susceptible to caspofungin inhibition, and heterozygous and homozygous Cafks1 C. albicans mutants could be distinguished based on the shape of inhibition curves. The C. albicans mutants were less susceptible to caspofungin than wild-type strains in a murine model of disseminated candidiasis. Five Candida isolates with reduced susceptibility to caspofungin were recovered from three patients enrolled in a clinical trial. Four C. albicans strains showed amino acid changes at Ser 645 of CaFks1p, while a single Candida krusei isolate had a deduced R1361G substitution. The clinical C. albicans mutants were less susceptible to caspofungin in the disseminated candidiasis model, and GS inhibition profiles and DNA sequence analyses were consistent with a homozygous fks1 mutation. Our results indicate that substitutions in the Fks1p subunit of GS are sufficient to confer reduced susceptibility to echinocandins in S. cerevisiae and the pathogens C. albicans and C. krusei.
The alpha/immediate early genes of herpes simplex virus are regulated by the specific assembly of a multiprotein enhancer complex containing the Oct-1 POU domain protein, the viral alpha-transinduction factor alpha TIF, (VP16, ICP25), and the C1 cellular factor. The C1 factor from mammalian cells is a heterogeneous but related set of polypeptides that interact directly with the alpha-transinduction factor to form a heteromeric protein complex. The isolation of cDNAs encoding the polypeptides of the C1 factor suggests that these proteins are proteolytic products of a novel precursor. The sequence of the amino termini of these polypeptide products indicate that the proteins are generated by site-specific cleavages within a reiterated 20-amino acid sequence. Although the C1 factor appears to be ubiquitously expressed, it is localized to subnuclear structures in specific cell types.
The structurally unrelated immunosuppressants FK506 and cyclosporin A (CsA) act similarly, inhibiting a Ca(2+)-dependent signal required for interleukin-2 transcription and T-cell activation. Each drug binds to its cytosolic receptor, FKBP-12 and cyclophilin, respectively, and the drug-receptor complexes inhibit the Ca2+/calmodulin-dependent protein phosphatase, calcineurin. In yeast, calcineurin has been implicated in recovery from alpha-mating factor arrest. Here we show that FK506 bound to yeast FKBP-12 appears to form a complex with yeast calcineurin. Moreover, recovery from mating factor arrest is highly sensitive to FK506 or CsA, and this sensitivity requires the presence of FKBP-12 or cyclophilin, respectively. These results define a key physiological target of an FK506- and CsA-sensitive signal pathway in yeast, suggest a high degree of mechanistic conservation with mammalian cells, and indicate that further examination of the yeast system should provide insight into the same process in T cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.