Quantitative analysis has tremendous but mostly unrealized potential in healthcare to support objective and accurate interpretation of the clinical imaging. In 2008, the National Cancer Institute began building the Quantitative Imaging Network (QIN) initiative with the goal of advancing quantitative imaging in the context of personalized therapy and evaluation of treatment response. Computerized analysis is an important component contributing to reproducibility and efficiency of the quantitative imaging techniques. The success of quantitative imaging is contingent on robust analysis methods and software tools to bring these methods from bench to bedside. 3D Slicer is a free open source software application for medical image computing. As a clinical research tool, 3D Slicer is similar to a radiology workstation that supports versatile visualizations but also provides advanced functionality such as automated segmentation and registration for a variety of application domains. Unlike a typical radiology workstation, 3D Slicer is free and is not tied to specific hardware. As a programming platform, 3D Slicer facilitates translation and evaluation of the new quantitative methods by allowing the biomedical researcher to focus on the implementation of the algorithm, and providing abstractions for the common tasks of data communication, visualization and user interface development. Compared to other tools that provide aspects of this functionality, 3D Slicer is fully open source and can be readily extended and redistributed. In addition, 3D Slicer is designed to facilitate the development of new functionality in the form of 3D Slicer extensions.In this paper, we present an overview of 3D Slicer as a platform for prototyping, development and evaluation of image analysis tools for clinical research applications. To illustrate the utility of the platform in the scope of QIN, we discuss several use cases of 3D Slicer by the existing QIN teams,
The extraction of the centerlines of tubular objects in two and three-dimensional images is a part of many clinical image analysis tasks. One common approach to tubular object centerline extraction is based on intensity ridge traversal. In this paper, we evaluate the effects of initialization, noise, and singularities on intensity ridge traversal and present multiscale heuristics and optimal-scale measures that minimize these effects. Monte Carlo experiments using simulated and clinical data are used to quantify how these "dynamic-scale" enhancements address clinical needs regarding speed, accuracy, and automation. In particular, we show that dynamic-scale ridge traversal is insensitive to its initial parameter settings, operates with little additional computational overhead, tracks centerlines with subvoxel accuracy, passes branch points, and handles significant image noise. We also illustrate the capabilities of the method for medical applications involving a variety of tubular structures in clinical data from different organs, patients, and imaging modalities.
Rationale-Malignancy provokes regional changes to vessel shape. Characteristic vessel tortuosity abnormalities appear early during tumor development, affect initially healthy vessels, spread beyond the confines of tumor margins, and do not simply mirror tissue perfusion. The ability to detect and quantify tortuosity abnormalities on high-resolution MRA images offers a new approach to the noninvasive diagnosis of malignancy. This report evaluates a computerized, statistical method of analyzing the shapes of vessels extracted from MRA in diagnosing cancer.Materials and Methods-The regional vasculature of 34 healthy subjects was compared to the tumor-associated vasculature of 30 brain tumors prior to surgical resection. The operator performing the analysis was blinded to the diagnosis. Vessels were segmented from an MRA of each subject, a region of interest was defined in each tumor patient and was mapped to all healthy controls, and a statistical analysis of vessel shape measures was then performed over the region of interest. Many difficult cases were included, such as pinpoint, hemorrhagic, and irradiated tumors, as were hypervascular benign tumors. Tumors were identified as benign or malignant on the basis of histological evaluation.Results-A discriminant analysis performed at the study's conclusion successfully classified all but one of the 30 tumors as benign or malignant on the basis of vessel tortuosity.Discussion-Quantitative, statistical measures of vessel shape offer a new approach to the diagnosis and staging of disease. Although the methods developed under the current report must be tested against a new series of cases, initial results are promising.
Recent contributions to the body of knowledge on traumatic brain injury (TBI) favor the view that multimodal neuroimaging using structural and functional magnetic resonance imaging (MRI and fMRI, respectively) as well as diffusion tensor imaging (DTI) has excellent potential to identify novel biomarkers and predictors of TBI outcome. This is particularly the case when such methods are appropriately combined with volumetric/morphometric analysis of brain structures and with the exploration of TBI-related changes in brain network properties at the level of the connectome. In this context, our present review summarizes recent developments on the roles of these two techniques in the search for novel structural neuroimaging biomarkers that have TBI outcome prognostication value. The themes being explored cover notable trends in this area of research, including (1) the role of advanced MRI processing methods in the analysis of structural pathology, (2) the use of brain connectomics and network analysis to identify outcome biomarkers, and (3) the application of multivariate statistics to predict outcome using neuroimaging metrics. The goal of the review is to draw the community's attention to these recent advances on TBI outcome prediction methods and to encourage the development of new methodologies whereby structural neuroimaging can be used to identify biomarkers of TBI outcome.
Histological and magnetic resonance imaging studies have demonstrated that age-associated alterations of the human brain may be at least partially related to vascular alterations. Relatively little information has been published on vascular changes associated with healthy aging, however. The study presented in this paper examined vessels segmented from standardized, high-resolution, magnetic resonance angiograms (MRA) of 100 healthy volunteers (50 males, 50 females), aged 18-74, without hypertension or other disease likely to affect the vasculature. The subject sample was divided into 5 age groups (n=20/group) with gender equally distributed per group. The anterior cerebral, both middle cerebral, and the posterior circulations were examined for vessel number, vessel radius, and vessel tortuosity. Males exhibited larger vessel radii regardless of age and across all anatomical regions. Both males and females displayed a lower number of MRA-discernible vessels with age, most marked in the posterior circulation. Age-associated tortuosity increases were relatively mild. Our multi-modal image database has been made publicly available for use by other investigators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.