Aims/hypothesis There is evidence that type 2 diabetes mellitus is associated with cognitive impairment. Most studies investigating this association have evaluated elderly individuals, after many years of diabetes, who generally have poor glycaemic control and significant vascular disease. The aim of the current study was to investigate the early cognitive consequences and associated brain correlates of type 2 diabetes. Materials and methods With regard to cognition and brain measures, we compared 23 age-, sex-and educationmatched control subjects with 23 mostly middle-aged individuals with relatively well-controlled diabetes of less than 10 years from the time of diagnosis. Results We found deficits in hippocampal-based memory performance and preservation of other cognitive domains. Relative to control subjects, individuals with diabetes had reductions in brain volumes that were restricted to the hippocampus. There was an inverse relationship between glycaemic control and hippocampal volume; in multivariate regression analysis, HbA 1c was the only significant predictor of hippocampal volume, accounting for 33% of the observed variance. Other variables commonly associated with type 2 diabetes, such as elevated BMI, hypertension or dyslipidaemia, did not independently contribute to the variance in hippocampal volume. Conclusions/interpretation These results suggest that the medial temporal lobe may be the first brain site affected by type 2 diabetes and that individuals in poorer metabolic control may be affected to a greater extent.
Cognitive deficits and hippocampal atrophy, features that are shared with aging and dementia, have been described in type 2 diabetes mellitus (T2DM). T2DM is associated with obesity, hypertension, dyslipidemia, hypothalamic pituitary adrenocortical (HPA) axis abnormalities and inflammation, all of which have been shown to negatively impact the brain. However, since most reports in T2DM focused on glycemic control, the relative contribution of these modifying factors to the impairments observed in T2DM remains unclear. We contrasted 41 middle-aged dementia-free volunteers with T2DM (on average 7 years since diagnosis) with 47 age-, education-, and gender-matched non-insulin resistant controls on cognition and brain volumes. HPA axis activity and other modifiers that accompany T2DM were assessed to determine their impact on brain and cognition. Individuals with T2DM had specific verbal declarative memory deficits, reduced hippocampal and prefrontal volumes, and impaired HPA axis feedback control. Diminished cortisol suppression after dexamethasone and dyslipidemia were associated with decreased cognitive performance, whereas obesity was negatively related to hippocampal volume. Moreover, prefrontal volume was influenced by worse glycemic control. Thus, obesity and altered cortisol levels may contribute to the impact of T2DM on the hippocampal formation, resulting in decreased verbal declarative memory performance.
Acetylcholine, at concentrations of 10(-10)--10(-7) M, inhibited the release of immunoreactive somatostatin (SRIF) from rat hypothalamic segments which had been maintained in short term culture for 24 h. Neostigmine (10(-6) M), an anticholinesterase, also inhibited the release of SRIF, whereas atropine (10(-6) M), a muscarinic anticholinergic, had no effect on basal SRIF release but blocked the inhibition caused by acetylcholine (10(-8) M). However, hexamethonium (10(-6) M), a nicotinic antagonist, did not abolish the inhibition induced by acetylcholine. Potassium depolarization (56 mM KCl) caused stimulation of SRIF release, which was dependent on the presence of calcium in the incubation medium. SRIF was measured by a RIA sensitive to 1 pg/tube. Authenticity of immunoreactive SRIF released was suggested by immunological parallelism and chromatographic criteria using gel and high pressure liquid systems. These results suggest that muscarinic cholinergic mechanisms may have a regulatory role modulating the secretion of SRIF and, consequently, GH through actions at a hypothalamic level.
The recent isolation of vasopressin (VP) from the rat and human pancreas led us to investigate the effects of VP on insulin secretion. In the SV 40-transformed hamster beta cell line (HIT), 0.1-1.0 nM VP caused rapid stimulation of insulin secretion. Slight but significant inhibition of insulin secretion was observed in the presence of 10 pM VP. These effects of VP on insulin secretion were paralleled by dose-dependent changes in inositol phosphate (IP) production, indicating mediation by V1-type VP receptors. VP stimulated IP3 production at 30 sec and production of IP1 by 60 sec. VP (0.1 nM to 1 microM) failed to stimulate the release or cellular content of cAMP, whereas forskolin was an effective stimulus. Forskolin and VP together caused at least additive stimulation of insulin secretion. Taken together, these observations indicate that VP is not acting via V2-mediated pathways. However, VP-induced stimulation of insulin and IP production were only slightly inhibited by a V1a pressor antagonist in 100- or 1,000-fold excess, indicating that VP effects are not mediated by V1a receptors. The V1 receptor involved may represent a V1b or a novel type of VP receptor. These observations suggest a potential physiological role of VP in regulating insulin secretion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.