A method for circuit-level modelling a physically realistic Esaki tunnel diode model is presented. A paramaterisation technique that transforms the strongly nonlinear characteristic of a tunnel diode into two relatively modest nonlinear characteristics is demonstrated. The introduction of an intermediate state variable results in a physically realistic mathematical model that is not only moderately nonlinear and therefore robust, but also single-valued.
As fuel economy regulations increase and customer preference shifts to smaller, higher power density engines it is more important to effectively cool certain areas of the cylinder head and valvetrain. In order to maximize valvetrain life and increase engine performance it is critical to maintain a near uniform valve seat temperature to enable proper sealing. As cylinder head bridges narrow, and the temperature increases, the water jacket may not be sufficient. An alternative method to ensuring equal temperature distribution across the valve is to promote low speed valve rotation. This will not only aid, cooling the valve seat, as well as cooling and cleaning the valves' seating surface. This paper describes the development and testing of a valve rotation study, utilizing the Taguchi approach in order to determine the most robust design. A test stand was utilized to examine the valve rotation in which the cam was driven directly using a DC motor. The testing was performed on a type II valvetrain, using a donor cylinder head. The Taguchi based project focused on three noise factors: cylinder head machining variability, oil pressure and engine speed, as well as various control factors including valve guide clearance, valve tip surface finish, keeper geometry, valve seal tension, spring shim amount, spring design, rocker arm tab clearance, rocker arm roller radius and rocker arm pad alignment. The testing was conducted using an L18 orthogonal array and a subsequent L9 to further optimize the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.