The regulation of carotenoid biosynthesis in a high-carotenoid-accumulating Fe'i group Musa cultivar, "Asupina", has been examined and compared to that of a low-carotenoid-accumulating cultivar, "Cavendish", to understand the molecular basis underlying carotenogenesis during banana fruit development. Comparisons in the accumulation of carotenoid species, expression of isoprenoid genes, and product sequestration are reported. Key differences between the cultivars include greater carotenoid cleavage dioxygenase 4 (CCD4) expression in "Cavendish" and the conversion of amyloplasts to chromoplasts during fruit ripening in "Asupina". Chromoplast development coincided with a reduction in dry matter content and fruit firmness. Chromoplasts were not observed in "Cavendish" fruits. Such information should provide important insights for future developments in the biofortification and breeding of banana.
Germplasm of common beans from the Mesoamerican gene pool races: Durango, Jalisco, Mesoamerica and Guatemala have highest genetic variation for the crop's improvement. The objective was to assign 50 common bean germplasm in Uganda into its gene pool races based on analyses of population structure. Secondly, to estimate heritability and effects of genotype × environment (GXE) interaction on common bean agronomic and yield traits in space and time. Sample genomic DNA was amplified in 2011 with 22 Simple sequence repeat markers (SSRs) and alleles separated using capillary electrophoresis. Field evaluations were conducted in 2010 and 2011 at NaCRRI and 2015 at CIAT – Kawanda. Multivariate analyses of SSRs data identified four subgroups within the germplasm: K4.1–K4.4, with corresponding Wrights fixation indices (FST) as 0.1829 for K4.1, 0.1585 for K4.4, 0.1579 for K4.2 and least for K4.3 at 0.0678. Gene pool race admixtures in the population (14%) were notable and attributed to gene flow. Four superior parents currently used in improving resistance to major diseases grouped as; Jalisco for MLB49-89A; Mesoamerica for MCM5001 and G2333; Durango for MEXICO 54. Heritability values for yield traits estimated using phenotypic data from above fixed parents, was above 0.81. Season and location had significant effect (P < 0.05) on numbers of: flower buds per inflorescence, pod formation and weight of 100 seeds. The findings will improve understanding of co-evolutionary relationships between bean hosts and pathogens for better disease management and will broaden the germplasm base for improving other tropical production constraints.
Background: Groundnut pre-and post-harvest contamination is commonly caused by fungi from the Genus Aspergillus. Aspergillus flavus is the most important of these fungi. It belongs to section Flavi; a group consisting of aflatoxigenic (A. flavus, A. parasiticus and A. nomius) and non-aflatoxigenic (A. oryzae, A. sojae and A. tamarii) fungi. Aflatoxins are food-borne toxic secondary metabolites of Aspergillus species associated with severe hepatic carcinoma and children stuntedness. Despite the well-known public health significance of aflatoxicosis, there is a paucity of information about the prevalence, genetic diversity and population structure of A. flavus in different groundnut growing agroecological zones of Uganda. This cross-sectional study was therefore conducted to fill this knowledge gap. Results: The overall pre-and post-harvest groundnut contamination rates with A. flavus were 30.0 and 39.2% respectively. Pre-and post-harvest groundnut contamination rates with A. flavus across AEZs were; 2.5 and 50.0%; (West Nile), 55.0 and 35.0% (Lake Kyoga Basin) and 32.5 and 32.5% (Lake Victoria Basin) respectively. There was no significant difference (χ 2 = 2, p = 0.157) in overall pre-and post-harvest groundnut contamination rates with A. flavus and similarly no significant difference (χ 2 = 6, p = 0.199) was observed in the pre-and post-harvest contamination of groundnut with A. flavus across the three AEZs. The LKB had the highest incidence of aflatoxin-producing Aspergillus isolates while WN had no single Aspergillus isolate with aflatoxin-producing potential. Aspergillus isolates from the pre-harvest groundnut samples had insignificantly higher incidence of aflatoxin production (χ 2 = 2.667, p = 0.264) than those from the post-harvest groundnut samples. Overall, A. flavus isolates exhibited moderate level (92%, p = 0.02) of genetic diversity across the three AEZs and low level (8%, p = 0.05) of genetic diversity within the individual AEZs. There was a weak positive correlation (r = 0.1241, p = 0.045) between genetic distance and geographic distance among A. flavus populations in the LKB, suggesting that genetic differentiation in the LKB population might be associated to geographic distance. A very weak positive correlation existed between genetic variation and geographic location in the entire study area (r = 0.01, p = 0.471), LVB farming system (r = 0.0141, p = 0.412) and WN farming system (r = 0.02, p = 0.478). Hierarchical clustering using the unweighted pair group method with arithmetic means (UPGMA) revealed two main clusters of genetically similar A. flavus isolates.
Molecular characterisation of common bean (Phaseolus vulgaris L.) accessions from Southwestern Uganda reveal high levels of genetic diversity The International Center for Tropical Agriculture (CIAT) believes that open access contributes to its mission of reducing hunger and poverty, and improving human nutrition in the tropics through research aimed at increasing the eco-efficiency of agriculture. CIAT is committed to creating and sharing knowledge and information openly and globally. We do this through collaborative research as well as through the open sharing of our data, tools, and publications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.