Sensitive, flexible, and rapid: A post‐hybridization labeling scheme was combined with a high‐throughput microfluidic scanning system to demonstrate the use of graphically encoded gel particles for rapid microRNA quantification (see picture). A versatile particle encoding scheme allows for scalable multiplexing that provides attomole sensitivity with a simple and efficient workflow.
We demonstrate the use of graphically encoded hydrogel microparticles for the sensitive and high-throughput multiplexed detection of clinically relevant protein panels in complex media. Combining established antibody capture techniques with advances in both microfluidic synthesis and analysis, we detected 1-8 pg/mL amounts of three cytokines (interleuken-2, interleuken-4, and tumor necrosis factor alpha) in single and multiplexed assays without the need for filtration or blocking agents. A range of hydrogel porosities was investigated to ensure rapid diffusion of targets and reagents into the particle as well as to maintain the structural integrity of particles during rinsing procedures and high-velocity microfluidic scanning. Covalent incorporation of capture antibodies using a heterobifunctional poly(ethylene glycol) linker enabled one-step synthesis and functionalization of particles using only small amounts of valuable reagents. In addition to the use of three separate types of single-probe particles, the flexibility of the stop-flow lithography (SFL) method was leveraged to spatially segregate the three probes for the aforementioned target set on an individual encoded particle, thereby demonstrating the feasibility of single-particle diagnostic panels. This study establishes the gel-particle platform as a versatile tool for the efficient quantification of protein targets and significantly advances efforts to extend the advantages of both hydrogel substrates and particle-based arrays to the field of clinical proteomics.
This protocol describes the core methodology for the fabrication of bar-coded hydrogel microparticles, the capture and labeling of protein targets and the rapid microfluidic scanning of particles for multiplexed detection. Multifunctional hydrogel particles made from poly(ethylene glycol) serve as a sensitive, nonfouling and bio-inert suspension array for the multiplexed measurement of proteins. Each particle type bears a distinctive graphical code consisting of unpolymerized holes in the wafer structure of the microparticle; this code serves to identify the antibody probe covalently incorporated throughout a separate probe region of the particle. The protocol for protein detection can be separated into three steps: (i) synthesis of particles via microfluidic flow lithography at a rate of 16,000 particles per hour; (ii) a 3-4-h assay in which protein targets are captured and labeled within particles using an antibody sandwich technique; and (iii) a flow scanning procedure to detect bar codes and quantify corresponding targets at rates of 25 particles per s. By using the techniques described, single- or multiple-probe particles can be reproducibly synthesized and used in customizable multiplexed panels to measure protein targets over a three-log range and at concentrations as low as 1 pg ml(-1).
Transcriptional profiling, which is directly or indirectly associated with expressed protein levels, has been used in various applications including clinical prognosis and pharmaceutical investigation of drug activities. Although the widely used reverse transcription polymerase chain reaction (RT-PCR) allows for the quantification of absolute amounts of mRNA (mRNA) from inputs as small as a single cell, it is an indirect detection method that requires the amplification of cDNA copies of target mRNAs. Here, we report the quantification of unmodified full-length transcripts, using poly(ethylene) glycol diacrylate (PEGDA) hydrogel microparticles synthesized via stop flow lithography (SFL). We show that PEG600 serves as an effective porogen to allow for the capture of large (∼1000-3700 nt long) mRNAs. Our relatively simple hydrogel-based mRNA detection scheme uses a multibiotinylated universal label probe and provides assay performance (limit of detection of ∼6 amol of an in-vitro-transcribed model target) comparable to an existing commercial bead-based technology that uses branched DNA (bDNA) signal amplification. We also demonstrate a 3-plex mRNA detection, without cross-reactivity, using shape-encoded "intraplex" hydrogel microparticles. Our ability to tune the porosity of encoded hydrogel microparticles expands the utility of this platform to now quantify biomacromolecules ranging in size from large mRNAs to small miRNAs.
In recent years there has been a surge in methods to synthesize geometrically and chemically complex microparticles. Analogous to atoms, the concept of a "periodic table" of particles has emerged and continues to be expanded upon. Complementing the natural intellectual curiosity that drives the creation of increasingly intricate particles is the pull from applications that take advantage of such high-value materials. Complex particles are now being used in fields ranging from diagnostics and catalysis to self-assembly and rheology, where material composition and microstructure are closely linked with particle function. This is especially true of polymer hydrogels, which offer an attractive and broad class of base materials for synthesis. Lithography affords the ability to engineer particle properties a priori and leads to the production of homogenous ensembles of particles. This review summarizes recent advances in synthesizing hydrogel microparticles using lithographic processes and highlight a number of emerging applications. We discuss advantages and limitations of current strategies, and conclude with an outlook on future trends in the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.