Autophagy degrades and is thought to recycle proteins, other macromolecules, and organelles. In genetically engineered mouse models (GEMMs) for Kras-driven lung cancer, autophagy prevents the accumulation of defective mitochondria and promotes malignancy. Autophagy-deficient tumor-derived cell lines are respiration-impaired and starvation-sensitive. However, to what extent their sensitivity to starvation arises from defective mitochondria or an impaired supply of metabolic substrates remains unclear. Here, we sequenced the mitochondrial genomes of wild-type or autophagy-deficient (Atg7) Kras-driven lung tumors. Although Atg7 deletion resulted in increased mitochondrial mutations, there were too few nonsynonymous mutations to cause generalized mitochondrial dysfunction. In contrast, pulse-chase studies with isotope-labeled nutrients revealed impaired mitochondrial substrate supply during starvation of the autophagy-deficient cells. This was associated with increased reactive oxygen species (ROS), lower energy charge, and a dramatic drop in total nucleotide pools. While starvation survival of the autophagy-deficient cells was not rescued by the general antioxidant N-acetyl-cysteine, it was fully rescued by glutamine or glutamate (both amino acids that feed the TCA cycle and nucleotide synthesis) or nucleosides. Thus, maintenance of nucleotide pools is a critical challenge for starving Kras-driven tumor cells. By providing bioenergetic and biosynthetic substrates, autophagy supports nucleotide pools and thereby starvation survival.
Highlights d Glycolysis in T cells/PBMCs from T2D subjects fails to stimulate T2D inflammation d T cells from T2D subjects have altered mitochondria d Altered import or oxidation of fatty acids activates inflammation in healthy cells d Mitochondrial changes combine with fatty acid metabolites to activate inflammation
Background Immune challenge is known to increase heat stroke risk, although the mechanism of this increased risk is unclear. Objectives We sought to understand the effect of immune challenge on heat stroke pathology. Patients/Methods Using a mouse model of classic heat stroke, we examined the impact of prior viral or bacterial infection on hematological aspects of recovery. Mice were exposed to heat either 48 or 72 hours following polyinosinic:polycytidylic acid (poly I:C) or lipopolysaccharide injection, time points when symptoms of illness (fever, lethargy, anorexia) were minimized or completely absent. Results Employing multivariate supervised machine learning to identify patterns of molecular and cellular markers associated with heat stroke, we found that prior viral infection simulated with poly I:C injection resulted in heat stroke presenting with high levels of factors indicating coagulopathy. Despite a decreased number of platelets in the blood, platelets are large and non‐uniform in size, suggesting younger, more active platelets. Levels of D‐dimer and soluble thrombomodulin were increased in more severe heat stroke, and in cases of the highest level of organ damage markers D‐dimer levels dropped, indicating potential fibrinolysis‐resistant thrombosis. Genes corresponding to immune response, coagulation, hypoxia, and vessel repair were up‐regulated in kidneys of heat‐challenged animals; these correlated with both viral treatment and distal organ damage while appearing before discernible tissue damage to the kidney itself. Conclusions Heat stroke‐induced coagulopathy may be a driving mechanistic force in heat stroke pathology, especially when exacerbated by prior infection. Coagulation markers may serve as accessible biomarkers for heat stroke severity and therapeutic strategies.
Text word count: 3,988; Abstract word count: 250; Number of figures: 5; Number of tables: 0; Number of references: 32 Scientific category: Thrombosis and HemostasisKey points:• A signature of pro-coagulation markers predicts circadian core body temperature and levels of organ damage in heat stroke • Changes in coagulopathy-related gene expression are evidenced before histopathological organ damage AbstractHeat stroke is a life-threatening condition characterized by loss of thermoregulation and severe elevation of core body temperature, which can cause organ failure and damage to the central nervous system. While no definitive test exists to measure heat stroke severity, immune challenge is known to increase heat stroke risk, although the mechanism of this increased risk is unclear. In this study, we used a mouse model of classic heat stroke to test the effect of immune challenge on pathology. Employing multivariate supervised machine learning to identify patterns of molecular and cellular markers associated with heat stroke, we found that prior viral infection simulated with poly I:C injection resulted in heat stroke presenting with high levels of factors indicating coagulopathy. Despite a decreased number of platelets in the blood, platelets are large and non-uniform in size, suggesting younger, more active platelets. Levels of D-dimer and soluble thrombomodulin were increased in more severe heat stroke, and in cases presenting with the highest level of organ damage markers D-dimer levels dropped, indicating potential fibrinolysisresistant thrombosis. Genes corresponding to immune response, coagulation, hypoxia, and vessel repair were up-regulated in kidneys of heat-challenged animals, and these increases correlated with both viral treatment and distal organ damage while appearing before discernible tissue damage to the kidney itself. We conclude that heat stroke-induced coagulopathy may be a driving mechanistic force in heat stroke pathology, especially when exacerbated by prior infection, and that coagulation markers may serve as an accessible biomarker for heat stroke severity and therapeutic strategies.
Patients with non-small cell lung cancer (NSCLC) who have distant metastases have a poor prognosis. To determine which genomic factors of the primary tumor are associated with metastasis, we analyzed data from 759 patients originally diagnosed with stage I–III NSCLC as part of the AACR Project GENIE Biopharma Collaborative consortium. We found that TP53 mutations were significantly associated with the development of new distant metastases. TP53 mutations were also more prevalent in patients with a history of smoking, suggesting that these patients may be at increased risk for distant metastasis. Our results suggest that additional investigation of the optimal management of patients with early-stage NSCLC harboring TP53 mutations at diagnosis is warranted in light of their higher likelihood of developing new distant metastases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.