In this study, hybrid composite consisting of aluminium (Al) shell and magnesium/glass microballoon (Mg-20 wt.% GMB) syntactic composite core was fabricated in a shell-core pattern by combining powder metallurgy and disintegrated melt deposition (DMD) techniques. Physical, microstructural and mechanical properties of as-cast Al and Al/Mg-20GMB hybrid composite were examined. Approximately 13% reduction in density (with respect to aluminium) was realized through the use of a syntactic composite core. Microstructural investigations revealed reasonable interfacial integrity between aluminium shell and Mg-GMB core material and the presence of Al, Mg and GMB phases. The interface region showed a hardness of 109 ± 2 Hv in comparison to the hardness of Al shell region (68 ± 4 Hv) and Mg-20GMB core region (174 ± 5 Hv). In comparison to as-cast Al, the yield strength and ultimate compressive strength of the as-cast Al/Mg-20GMB hybrid composite increased by ~65.4% and ~60%, respectively. Further, the energy absorption under compressive loading for the Al/Mg-20GMB hybrid composite was ~26% higher compared to pure Al. This study validated that Al/Mg-20GMB hybrid composite with superior absolute and specific mechanical properties can be fabricated and used for weight critical applications.
Light weighting of magnesium-based materials is crucial for its extensive use in transportation applications. Hybrid processing of these materials in a shell-core pattern can substantially improve the specific properties of magnesium. In the present study, the Mg/Mg-20GMB (glass microballoon) hybrid composite was prepared using a disintegrated melt deposition technique. Microstructural characterization and mechanical properties of the developed as-cast Mg/Mg-20GMB hybrid composite were investigated. Results revealed that a unified metallurgical interface was formed between the Mg-20GMB core material and the pure Mg shell. Energy dispersive X-ray spectroscopy (EDX) results confirmed the existence of Mg2Si as the secondary phase in the Mg-20GMB core material. The hybrid Mg/Mg-20GMB composite exhibited much superior compressive yield strength (↑71.6%), lower ultimate compressive strength (↓23.25%), and enhanced ductility (↑186.48%) when compared to as-cast pure magnesium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.