Background Non–muscle-invasive bladder cancer (NMIBC) is over three times as common in men as it is in women; however, female patients do not respond as well to immunotherapeutic treatments and experience worse clinical outcomes than their male counterparts. Based on the established sexual dimorphism in mucosal immune responses, we hypothesized that the tumor immune microenvironment of bladder cancer differs between the sexes, and this may contribute to discrepancies in clinical outcomes. Objective To determine biological sex-associated differences in the expression of immune regulatory genes and spatial organization of immune cells in tumors from NMIBC patients. Design, setting, and participants Immune regulatory gene expression levels in tumors from male ( n = 357) and female ( n = 103) patients were measured using whole transcriptome profiles of tumors from the UROMOL cohort. Multiplexe immunofluorescence was performed to evaluate the density and spatial distribution of immune cells and immune checkpoints in tumors from an independent cohort of patients with NMIBC ( n = 259 males and n = 73 females). Outcome measurements and statistical analysis Transcriptome sequencing data were analyzed using DESeq2 in R v4.0.1, followed by application of the Kruskal-Wallis test to determine gene expression differences between tumors from males and females. Immunofluorescence data analyses were conducted using R version 3.5.3. Survival analysis was performed using survminer packages. Results and limitations High-grade tumors from female patients exhibited significantly increased expression of B-cell recruitment ( CXCL13 ) and function ( CD40 )-associated genes and the immune checkpoint genes CTLA4 , PDCD1 , LAG3 , and ICOS . Tumors from female patients showed significantly higher infiltration of PD-L1+ cells and CD163+ M2-like macrophages than tumors from male patients. Increased abundance of CD163+ macrophages and CD79a+ B cells were associated with decreased recurrence-free survival. Conclusions These novel findings highlight the necessity of considering sexual dimorphism in the design of future immunotherapy trials in NMIBC. Patient summary In this study, we measured the abundance of various immune cell types between tumors from male and female patients with non–muscle-invasive bladder cancer. We demonstrate that tumors from female patients have a significantly higher abundance of immunosuppressive macrophages that express CD163. Higher abundance of tumor-associated CD163-expressing macrophages and B cells is associated with shorter recurrence-free survival in both male a...
Sex and age associated differences in the tumor immune microenvironment of non-muscle invasive bladder (NMIBC) cancer and associated clinical outcomes are emerging indicators of treatment outcomes. The incidence of urothelial carcinoma of the bladder is four times higher in males than females; however, females tend to present with a more aggressive disease, a poorer response to immunotherapy and suffer worse clinical outcomes. Recent findings have demonstrated sex differences in the tumor immune microenvironment of non-muscle invasive and muscle invasive bladder cancer and associated clinical outcomes. However, a significant gap in knowledge remains with respect to the current pre-clinical modeling approaches to more precisely recapitulate these differences towards improved therapeutic design. Given the similarities in mucosal immune physiology between humans and mice, we evaluated the sex and age-related immune alterations in healthy murine bladders. Bulk-RNA sequencing and multiplex immunofluorescence-based spatial immune profiling of healthy murine bladders from male and female mice of age groups spanning young to old showed a highly altered immune landscape that exhibited sex and age associated differences, particularly in the context of B cell mediated responses. Spatial profiling of healthy bladders, using markers specific to macrophages, T cells, B cells, activated dendritic cells, high endothelial venules, myeloid cells and the PD-L1 immune checkpoint showed sex and age associated differences. Bladders from healthy older female mice also showed a higher presence of tertiary lymphoid structures (TLSs) compared to both young female and male equivalents. Spatial immune profiling of N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) carcinogen exposed male and female bladders from young and old mice revealed a similar frequency of TLS formation, sex differences in the bladder immune microenvironment and, age associated differences in latency of tumor induction. These findings support the incorporation of sex and age as factors in pre-clinical modeling of bladder cancer and will potentially advance the field of immunotherapeutic drug development to improve clinical outcomes.
Background: Intravesical Bacillus Calmette Guerin (BCG) has been the gold standard immunotherapy to treat high risk non-muscle invasive bladder cancer (NMIBC) for over 40 years. Attenuation of Mycobacterium bovis for clinical use as BCG results in loss of its ability to activate the "Stimulator of Interferon Genes" (STING) pathway and potentially limits local anti-tumor immune activity and subsequent BCG responsiveness due to reduced induction of the immune cell recruiting chemokines primarily, CXCL10. We conducted the current study to determine the potential of STING pathway agonist in synergizing with BCG to enhance chemokine induction. Methods: The TICE strain of BCG (OncoTICE) was used in combination with STING agonist to determine STING pathway activation and CXCL10 production in THP-1 monocytic cell line, THP-1 defNLRP3, THP-1 dual STING knock out cells, RT112 bladder cancer cells and primary bladder epithelial cells. NanoString platform-based gene expression profiling and multiplex cytokine analysis were performed to determine induction of interferon associated genes and secreted cytokines. Results: Activation of cytosolic pattern recognition receptor and downstream IFN1 pathways demonstrated synergistic activation of STING pathway enhanced BCG induced inflammasome and STING pathway gene expression in monocytes and bladder cancer cells. The significant differences in CXCL10, CCL5, IL-8 and MIP-1a/1b amongst the knockout cell lines confirm the convergence of these pathways following combination treatment with BCG and STING agonist. Conclusions: Findings from our study are the first evidence indicating that STING pathway activators are promising new innate immune modulators with a potential to synergize with BCG therapy in the treatment of NMIBC.
Introduction: While studies suggest that innate immune memory acquired by circulating monocytes may mediate the benefit of bacillus Calmette-Guérin (BCG) in the treatment of patients with high-risk non-muscle-invasive bladder cancer (NMIBC), prospective studies are lacking. Innate immune memory is defined by enhanced release of pro-inflammatory cytokines by innate immune cells following a secondary challenge with pattern recognition receptor (PRR) ligands. Methods: Peripheral blood monocytes isolated from 33 patients with intermediate- or high-risk NMIBC before and after two or five induction BCG instillations were stimulated with the PRR ligand lipopolysaccharide (LPS). Inflammatory cytokine levels in the culture medium were measured. Extent of innate immune memory acquisition was determined by dividing the levels of cytokines released after BCG instillation by the levels released prior to BCG therapy. Results: Monocytes secreted variable levels of TNFα, IL-1β, IL-6, IFNγ, IL-12, and IL-10. Compared with patients with recurrences, the post-BCG:pre-BCG ratio of IL-12 in monocyte cultures from patients without recurrences after five BCG instillations was significantly increased. Patients with no innate immune memory (based on IL-12 ratios) had significantly shorter times-to-recurrence than patients with innate immune memory (p<0.001). Eighty-four percent (16/19) of patients with innate immune memory vs. only 22% (2/9) of patients without memory had disease-free survival of over 500 days. Conclusion: Results demonstrate a potential link between BCG-induced innate immune memory peripherally and local anti-tumor responses. Further validation will increase our understanding of the mode of action of BCG and, therefore, will be used to enhance its effectiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.