The crystal structures of 35 molecular compounds have been redetermined from laboratory monochromatic capillary transmission X-ray powder diffraction data using the simulated-annealing approach embodied within the DASH structure solution package. The compounds represent industrially relevant areas (pharmaceuticals; metal coordination compounds; nonlinear optical materials; dyes) in which the research groups in this multi-centre study are active. The molecules were specifically selected to form a series within which the degree of structural complexity (i.e. degrees of freedom in the global optimization) increased systematically, the degrees of freedom increasing with increasing number of optimizable torsion angles in the structural model and with the inclusion of positional disorder or multiple fragments (counterions; crystallization solvent; Z 0 > 1). At the lower end of the complexity scale, the structure was solved with excellent reproducibility and high accuracy. At the opposite end of the scale, the more complex search space offered a significant challenge to the global optimization procedure and it was demonstrated that the inclusion of modal torsional constraints, derived from the Cambridge Structural Database, offered significant benefits in terms of increasing the frequency of successful structure solution by restricting the magnitude of the search space in the global optimization.
Crystals extracted from human osteoarthritic knee cartilage induce the production of proinflammatory and catabolic mediators (NO, MMP-13 and PGE(2)) in human primary chondrocytes and synoviocytes. Synthetic calcium phosphate and pyrophosphate crystals elicit a similar response in those cells. Our findings suggest that these crystals could contribute to cartilage degradation and synovitis in OA.
During drug development control of polymorphism, particle properties and impurities are critical for ensuring a good quality, reproducible, and safe medicine. A wide variety of analytical techniques are employed in demonstrating the regulators control over the drug substance and product manufacturing, storage, and supply. Transmission electron microscopy (TEM) offers the opportunity to analyze in detail pharmaceutical systems at a length scale and limit of detection not readily achieved by many traditional techniques. However, the use of TEM as a characterization tool for drug development is uncommon due to possible damage caused by the electron beam. This work outlines the development of a model, using molecular descriptors, to predict the electron beam stability of active pharmaceutical ingredients (API). For a given set of conditions and a particular imaging or analytical mode, the total number of electrons per unit area, which causes observable damage to a sample in the TEM, can be defined as the critical fluence ( C). Here the C of 20 poorly water-soluble APIs were measured using selected area electron diffraction. Principal component analysis was used to select the most influential molecular descriptors on C, which were shown to be descriptors involving the degree of conjugation, the number of hydrogen bond donors and acceptors, and the number of rotatable bonds. These were used to generate several multiple linear regression models. The model that provided the best fit to the measured C data included the ratio of the number of conjugated carbons to nonconjugated carbons, the ratio of the number of hydrogen bond donors to acceptors, and the ratio of the number of hydrogen bond acceptors to donors. Using this model, the C of the majority of the compounds was predicted within ±2 e/Å. Molecules with no hydrogen bond acceptors did not fit the model accurately possibly due to the limited sample size or the influence of other parameters not included in this model, such as intermolecular bond energies. The model presented can be used to support pharmaceutical development by quickly assessing the stability of other poorly soluble drugs in TEM. Provided that the model suggests that the API is relatively stable to electron irradiation, TEM offers the prospect of determining the presence of crystalline material at low levels at length scales and limits of detection unobtainable by other techniques. This is particularly so for amorphous solid dispersions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.