We present preliminary results from a comparison of image estimation and recovery algorithms developed for use with advanced telescope instrumentation and adaptive optics systems. Our study will quantitatively compare the potential of these techniques to boost the resolution of imagery obtained with undersampled or low-bandwidth adaptive optics; example applications are optical observations with JR-optimized AO, AO observations in severe turbulence, and AO observations with dim guidestars. We will compare the algorithms in terms of morphological and relative radiometric accuracy as well as computational efficiency. Here, we present qualitative comments on image results for two levels each of seeing, object brightness, and AO compensation/wavefront sensing.
Object identification in deep space is a surveillance mission critical to our national defense. Satellite health I status monitoring is another important space surveillance task with both military and civilian applications. Deep space satellites provide challenging targets for ground-based optical sensors due to the extreme range imposed by geo-stationary and geosynchronous orbits. The Air Force Research Laboratory, in partnership with Trex Enterprises and our other contractor partners, will build a new ground-based sensor to address these deficiencies. The Geo Light Imaging National Testbed (GLiNT) is based on an active imaging concept known as Fourier telescopy. In this technique, the target satellite is illuminated by two or more laser sources. The corresponding fields interfere at the satellite to form interference fringes. These fringes may be made to move across the target by the introduction of a frequency shift between the laser beams. The resulting time-varying laser backscatter contains information about a Fourier component of the target reflectivity and may be collected with a large solar heliostat array. This large unphased receiver provides sufficient signal-to-noise ratio for each Fourier component using relatively low power laser sources. A third laser source allows the application of phase closure in the image reconstruction software. Phase closure removes virtually all low frequency phase distortions and guarantees that the phases of all fringes are relatively fixed. Therefore, the Fourier phase associated with each component can be recovered accurately. This paper briefly reviews the history of Fourier telescopy, the proposed design of the GLINT system, and the future ofthis research area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.