Association of plastic particles with plant roots could represent a pathway for human consumption of plastic and plastic-associated organic contaminants.
Extraction and quantification of nano- and microplastics from sediments and soils is challenging. Although no standard method has been established so far, flotation is commonly used to separate plastic from mineral material. The objective of this study was to test the efficiency of flotation for the extraction of nano- and microplastics from biosolids and soil. We spiked biosolids and soil samples with polystyrene nano- and microbeads (0.05, 1.0, 2.6, 4.8, and 100 μm diameter). Different extraction methods (w/ and w/o H2O2 digestion) were tested, and plastic beads were separated from mineral particles by flotation in a ZnCl2 solution. Plastic particles were quantified by UV-Vis spectrometry and gravimetrically. While large beads (100 μm) could be quantitatively extracted (∼100%) from both biosolids and soils, smaller beads had low extraction efficiencies (ranging from 5 to 80%, with an average of 20%). Except for the 100 μm beads, oxidation with H2O2 negatively impacted the extraction efficiencies. For the soil, extraction with water only, followed by flotation in a ZnCl2 solution, resulted in relatively high extraction efficiencies (>75%) for beads larger than 1 μm, but low efficiencies (<30%) for the 0.05 and 1.0 μm beads. Our results indicate that while flotation generally works to separate plastic nano- and microbeads in a solution, the challenge is to quantitatively extract nano- and microbeads from a biosolids or soil matrix. Samples high in organic matter content require removal of the organic matter, but the common method of H2O2 oxidation leads to poor extraction efficiencies for nano- and microbeads.
Hematopoietic stem cell (HSC) transplantation has the potential to treat a variety of human diseases, including genetic deficiencies, immune disorders, and to restore immunity following cancer treatment. However, there are several obstacles that prevent effective HSC transplantation in humans. These include finding a matched donor, having a sufficient number of cells for the transplant, and the potency of the cells in the transplant. Ethical issues prevent effective research in humans that could provide insight into ways to overcome these obstacles. Highly immunodeficient mice can be transplanted with human HSCs and this process is accompanied by HSC homing to the murine bone marrow. This is followed by stem cell expansion, multilineage hematopoiesis, long-term engraftment, and functional human antibody and cellular immune responses. As such, humanized mice serve as a model for human HSC transplantation. A variety of conditions have been analyzed for their impact on HSC transplantation to produce humanized mice, including the type and source of cells used in the transplant, the number of cells transplanted, the expansion of cells with various protocols, and the route of introduction of cells into the mouse. In this review, we summarize what has been learned about HSC transplantation using humanized mice as a recipient model and we comment on how these models may be useful to future preclinical research to determine more effective ways to expand HSCs and to determine their repopulating potential in vivo.
Environmental contextNanominerals are more reactive than bulk minerals, a property that strongly influences the fate of nutrients and contaminants in soils and plants. This review discusses applications of Fe- and Mn-nano-oxides in agricultural systems and their potential to be used as fertiliser and contaminant adsorbents, while addressing potential phytotoxicity. We discuss areas where significant advances are needed, and provide a framework for future work. AbstractRising population growth and increase global food demand have made meeting the demands of food production and security a major challenge worldwide. Nanotechnology is starting to become a viable remediation strategy of interest in farming. Ultimately, it may be used as a sustainability tool in agricultural systems. In these roles, it could be used to increase the efficiency of techniques such as food monitoring, pathogen control, water treatment and targeted delivery of agrochemicals. In addition to these uses, nanoparticles, particularly nano-metal-oxides (NMOs), have been engineered to act as contaminant scavengers and could be applied to a wide range of systems. Numerous studies have investigated the scavenging ability of NMOs, but few have investigated them in this role in the context of agricultural and food systems. Within these systems, however, research has demonstrated the potential of NMOs to increase crop health and yield but few have studied using NMOs as sources of key micronutrients, such as Fe and Mn. In this review, we address previous research that has used Fe- and Mn-NMOs in agricultural systems, particularly the worldwide crop production of the four major staple foods – rice, wheat, maize and soybeans – highlighting their application as fertilisers and sorbents. Fe- and Mn-NMOs are strong candidates for immobilisation of agricultural contaminants in soils and, because they are naturally ubiquitous, they have the potential to be a cost-effective and sustainable technology compared with other remediation strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.