The uptake of anthropogenic carbon dioxide (CO2) from the atmosphere has resulted in a decrease in seawater aragonite saturation state (Ωarag), which affects the health of carbonate‐bearing organisms and the marine ecosystem. A substantial short‐term variability of surface water Ωarag, with an increase of up to 0.32, was observed in the central Mid‐Atlantic Bight off the Delaware and the Chesapeake Bays over a short period of 10 days in summer 2015. High‐frequency underway measurements for temperature, salinity, percentage saturation of dissolved oxygen, oxygen to argon ratio, pH, fCO2, and measurements based on discrete samples for pH, dissolved inorganic carbon, and total alkalinity are used to investigate how physical and biogeochemical processes contribute to the changes of Ωarag. Quantitative analyses show that physical advection and mixing processes are the dominant forces for higher Ωarag in slope waters while biological carbon removal and CO2 degassing contribute to increased Ωarag in shelf waters.
As ocean acidification (OA) sensor technology develops and improves, in situ deployment of such sensors is becoming more widespread. However, the scientific value of these data depends on the development and application of best practices for calibration, validation, and quality assurance as well as on further development and optimization of the measurement technologies themselves. Here, we summarize the results of a 2-day workshop on OA sensor best practices held in February 2018, in Victoria, British Columbia, Canada, drawing on the collective experience and perspectives of the participants. The workshop on in situ Sensors for OA Research was organized around three basic questions: 1) What are the factors limiting the precision, accuracy and reliability of sensor data? 2) What can we do to facilitate the quality assurance/quality control (QA/QC) process and optimize the utility of these data? and 3) What sort of data or metadata are needed for these data to be most useful to future users? A synthesis of the discussion of these questions among workshop participants and conclusions drawn is presented in this paper.
Studying carbon dioxide in the ocean helps to understand how the ocean will be impacted by climate change and respond to increasing fossil fuel emissions. The marine carbonate system is not well characterized in the Arctic, where challenging logistics and extreme conditions limit observations of atmospheric CO2 flux and ocean acidification. Here, we present a high-resolution marine carbon system data set covering the complete cycle of sea-ice growth and melt in an Arctic estuary (Nunavut, Canada). This data set was collected through three consecutive yearlong deployments of sensors for pH and partial pressure of CO2 in seawater (pCO2sw) on a cabled underwater observatory. The sensors were remarkably stable compared to discrete samples: While corrections for offsets were required in some instances, we did not observe significant drift over the deployment periods. Our observations revealed a strong seasonality in this marine carbon system. Prior to sea-ice formation, air–sea gas exchange and respiration were the dominant processes, leading to increasing pCO2sw and reduced aragonite saturation state (ΩAr). During sea-ice growth, water column respiration and brine rejection (possibly enriched in dissolved inorganic carbon, relative to alkalinity, due to ikaite precipitation in sea ice) drove pCO2sw to supersaturation and lowered ΩAr to < 1. Shortly after polar sunrise, the ecosystem became net autotrophic, returning pCO2sw to undersaturation. The biological community responsible for this early switch to autotrophy (well before ice algae or phytoplankton blooms) requires further investigation. After sea-ice melt initiated, an under-ice phytoplankton bloom strongly reduced aqueous carbon (chlorophyll-a max of 2.4 µg L–1), returning ΩAr to > 1 after 4.5 months of undersaturation. Based on simple extrapolations of anthropogenic carbon inventories, we suspect that this seasonal undersaturation would not have occurred naturally. At ice breakup, the sensor platform recorded low pCO2sw (230 µatm), suggesting a strong CO2 sink during the open water season.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.